精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}的首项a1=1,a2为整数,且a3∈[6,8]
(1)求数列{an}的通项公式;
(2)设${b_n}={a_n}+2+\frac{1}{{{2^{{a_n}+2}}}}$,Sn=b1+b2+…+bn,问是否存在最小的正整数n,使得Sn>108恒成立?若存在,求出n的值;若不存在,说明理由.

分析 (1)设等差数列{an}的公差为d,由a1=1,a2为整数,可知d为整数,又a3=1+2d∈[6,8]知,解得d,可得
an
(2)利用等比数列的求和公式、不等式的解法即可得出.

解答 解:(1)设等差数列{an}的公差为d,由a1=1,a2为整数,可知d为整数,
又a3=1+2d∈[6,8]知,d=3.…(2分)
所以an=3n-2.…(4分)
(2)由(1)知,${b_n}={a_n}+2+\frac{1}{{{2^{{a_n}+2}}}}=3n+{({\frac{1}{8}})^n}$,…(5分)
于是${S_n}=3(1+2+3+…+n)+\frac{{\frac{1}{8}[{1-{{(\frac{1}{8})}^n}}]}}{{1-\frac{1}{8}}}=\frac{3}{2}n(n+1)+\frac{1}{7}[{1-{{(\frac{1}{8})}^n}}]$.…(9分)
要使${S_n}=\frac{3}{2}n(n+1)+\frac{1}{7}[{1-{{(\frac{1}{8})}^n}}]>108$恒成立,
只需$\frac{3}{2}n(n+1)≥108$,…(10分)
解得n≥8或n≤-9(舍),…(11分)
所以存在最小的正整数n=8使得Sn>108恒成立.…(12分)

点评 本题考查了等差数列与等比数列的通项公式与求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知全集为R,集合A={x|$\frac{x-3}{x+1}$≤0},集合B={x||2x+1|>3}.求A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知某几何体的三视图如图所示,则该几何体的表面积为(  )
A.40B.30C.36D.42

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对任意实数a,b,定义运算“⊕”:$a⊕b=\left\{\begin{array}{l}b,a-b≥1\\ a,a-b<1\end{array}\right.$,设f(x)=(x2-1)⊕(4+x),若函数y=f(x)-k有三个不同零点,则实数k的取值范围是(  )
A.(-1,2]B.[0,1]C.[-1,3)D.[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an},{bn}中,a1=1,b1=2,an+1=bn+1,bn+1=an+1(n∈N*).
(1)求数列{bn-an},{an+bn}的通项公式;
(2)设Sn为数列的前n项的和,求数列$\left\{{\frac{1}{{4{S_n}-1+{{({-1})}^n}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,a,b,c分别是A,B,C的对边,$a=2\sqrt{3},b=2\sqrt{2}$,且1+2cos(B+C)=0,则BC边上的高等于(  )
A.$2({\sqrt{3}+1})$B.$2({\sqrt{3}-1})$C.$\sqrt{3}+1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设命题p:“?x∈R,x2+2x>m”;命题q:“?x0∈R,使${x_0}^2+2m{x_0}+2-m≤0$”.如果命题p∨q为真,命题p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={-1,1,2,3},B={x|x≥2},那么A∩B等于(  )
A.{3}B.{2,3}C.{-1,2,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆锥的侧面展开图为一个圆心角为120°,且面积为3π的扇形,则该圆锥的体积等于$\frac{2\sqrt{2}}{3}π$.

查看答案和解析>>

同步练习册答案