分析 设P(x,y),由P为椭圆$\frac{{x}^{2}}{3}$+y2=1的点,则x=$\sqrt{3}$cosθ,y=sinθ,利用点到直线的距离公式d=$\frac{丨\sqrt{3}cosθ-sinθ+6丨}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$丨$\sqrt{3}$cosθ-sinθ+6丨,利用辅助角公式及正弦函数的性质,即可求得P到直线x-y+6=0的最大距离.
解答 解:设P(x,y),由P为椭圆$\frac{{x}^{2}}{3}$+y2=1的点,则x=$\sqrt{3}$cosθ,y=sinθ,
点P到直线x-y+6=0的距离d=$\frac{丨\sqrt{3}cosθ-sinθ+6丨}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$丨$\sqrt{3}$cosθ-sinθ+6丨,
由$\sqrt{3}$cosθ-sinθ+6=-2sin(x-$\frac{π}{3}$)+6,由-1≤sin(x-$\frac{π}{3}$)≤1,
∴4≤-2sin(x-$\frac{π}{3}$)+6≤8,则2$\sqrt{2}$≤$\frac{\sqrt{2}}{2}$丨$\sqrt{3}$cosθ-sinθ+6丨≤4$\sqrt{2}$,
∴d=$\frac{\sqrt{2}}{2}$丨$\sqrt{3}$cosθ-sinθ+6丨的最大值为4$\sqrt{2}$,
故答案为:4$\sqrt{2}$.
点评 本题考查椭圆的参数方程,点到直线的距离公式,辅助角公式及正弦函数图象及性质,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{13}$ | C. | 13 | D. | $\sqrt{7-2\sqrt{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com