精英家教网 > 高中数学 > 题目详情

【题目】高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图.

(Ⅰ)求图中的值;

(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率;

(Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下2×2列联表:

经常使用

偶尔使用或不用

合计

男性

50

100

女性

40

合计

200

完成上述2×2列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(Ⅰ);(Ⅱ);(Ⅲ)表见解析,没有85%的把握认为淮南市使用永安共享单车的情况与性别有关.

【解析】

(Ⅰ)根据频率分布直方图中的面积之和为1,求参数.
(Ⅱ)由题意前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为233,利用列举的方法可求得概率.
(Ⅲ)先计算填好2×2列联表,然后代入公式计算,与给出的表格比较得出答案.

(Ⅰ)由题意解得.

(Ⅱ)由频率分布直方图可知,前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为233,分别记为,从中抽取2辆的结果有:

28个,恰有1辆的使用时间不低于50分钟的结果有12个,

∴所求的概率为.

(Ⅲ)2×2列联表如下:

经常使用

偶尔使用或不用

合计

男性

50

50

100

女性

60

40

100

合计

110

90

200

由上表及公式可知,因为2.022.072

所以没有85%的把握认为淮南市使用永安共享单车的情况与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,…,是由)个整数,…,按任意次序排列而成的数列,数列满足.

1)当时,写出数列,使得.

2)证明:当为正偶数时,不存在满足)的数列.

3)若,…,,…,按从大到小的顺序排列而成的数列,写出),并用含的式子表示.

(参考:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为参数).直线的参数方程为参数).

)求曲线在直角坐标系中的普通方程;

)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两动圆),把它们的公共点的轨迹记为曲线,若曲线轴的正半轴的交点为,且曲线上的相异两点满足:.

1)求曲线的轨迹方程;

2)证明直线恒经过一定点,并求此定点的坐标;

3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求证上是单调递减函数;

2)若对任意的,不等式恒成立,求实数的取值范围;

3)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱柱的底面是菱形,平面,是侧棱上的点

1)证明:平面;

2)若的中点,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为升;

(1)将表示为的函数;

(2)若,求总用氧量的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的单调区间;

2)若关于的方程有四个不同的解,求实数应满足的条件;

3)在(2)条件下,若成等比数列,用表示t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数定义已知偶函数的定义域为时,

1)求并求出函数的解析式;

2)若存在实数使得函数上的值域为,求实数的取值范围.

查看答案和解析>>

同步练习册答案