精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={1,2,3},集合B={x|a+1<x<6a﹣1},其中a∈R.
(1)写出集合A的所有真子集;
(2)若A∩B={3},求a的取值范围.

【答案】
(1)解:∵A={1,2,3},

∴A的真子集为{1},{2},{3},{1,2},{1,3},{2,3}


(2)解:∵A={1,2,3},集合B={x|a+1<x<6a﹣1},且A∩B={3},

解得:1≤a<2


【解析】(1)找出集合A的所有真子集即可;(2)根据A与B的交集,确定出a的范围即可.
【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】根据下列条件,分别求抛物线的标准方程:

(1)抛物线的焦点是双曲线16x2-9y2=144的左顶点;

(2)抛物线的焦点Fx轴上,直线y=-3与抛物线交于点AAF=5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a (a>0,且a≠1),x∈[0, ]的最大值比最小值大2a,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且是等比数列.

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线处的切线与直线垂直,求的值;

(Ⅱ)当时,求证:存在实数使.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ +b,其中a,b是常数且a>0.
(1)用函数单调性的定义证明f(x)在区间(0, ]上是单调递减函数;
(2)已知函数f(x)在区间[ ,+∞)上是单调递增函数,且在区间[1,2]上f(x)的最大值为5,最小值为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若,求函数的单调区间;

(Ⅱ)方程有3个不同的实根,求实数的取值范围;

(Ⅲ)当时,若对于任意的,都存在,使得,求满足条件的正整数的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos4x﹣sin4x.下列结论正确的是(
A.函数f(x)在区间[0, ]上是减函数
B.函数f(x)的图象关于原点对称
C.f(x)的最小正周期为
D.f(x)的值域为[﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为,已知.

1)试写出

2)设,求证:数列是等比数列;

3)求出数列的前项和为及数列的通项公式.

查看答案和解析>>

同步练习册答案