【题目】(本小题满分12分)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(1)若,求外接圆的方程;
(2)若过点的直线与椭圆 相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.
【答案】(I)或;
(II),或.
【解析】
试题分析:(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.
试题解析:解:(1)由题意知:,,又,
解得: 椭圆的方程为:2分
可得:,,设,则,,
,,即
由 ,或
即,或4分
①当的坐标为时,, 外接圆是以为圆心,为半径的圆,即5分
②当的坐标为时,,,所以为直角三角形,其外接圆是以线段为直径的圆,圆心坐标为,半径为,
外接圆的方程为
综上可知:外接圆方程是,或7分
(2)由题意可知直线的斜率存在.
设,,,Z|X|X|K]
由得:
由得:() 9分
,即
,结合()得: 11分
,
从而,
点在椭圆上,,整理得:
即,,或13分
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分别截取AE=AH=CF=CG=x(x>0),设四边形EFGH的面积为y.
(1)写出四边形EFGH的面积y与x之间的函数关系;
(2)求当x为何值时y取得最大值,最大值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线:(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设点的直角坐标为,直线与曲线的交点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求的普通方程和直线的倾斜角;
(2)设点和交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估计顾客同时购买乙和丙的概率;
(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买中商品的概率;
(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥的底面是等边三角形,点在平面上的射影在内(不包括边界),.记,与底面所成角为,;二面角,的平面角为,,则,,,之间的大小关系等确定的是()
A. B.
C. 是最小角,是最大角D. 只能确定,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com