精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一天二十四小时内到达该码头的时刻是等可能的.如果甲船停泊时间为1小时,乙船停泊时间为2小时,求它们中的任意一艘都不需要等待码头空出的概率.

【答案】

【解析】

试题分析:本题利用几何概型求解.设甲、乙两艘船到达码头的时刻分别为x与y,将“甲、乙两船都不需要等待码头空出”用关于x,y的不等关系表示,再所得不等关系在坐标系画出图形,最后求面积比即得.

解:这是一个几何概型问题.

设甲、乙两艘船到达码头的时刻分别为x与y,A为“甲、乙两船都不需要等待码头空出”,

则0≤x≤24,0≤y≤24,

且基本事件所构成的区域为Ω={(x,y)|0≤x≤24,0≤y≤24}.

要使两船都不需要等待码头空出,

当且仅当甲比乙早到达1小时以上或乙比甲早到达2小时以上,

即y﹣x≥1或x﹣y≥2,故A={(x,y)|y﹣x≥1或x﹣y≥2},x[0,24],y[0,24]

A为图中阴影部分,Ω为边长是24的正方形,

所求概率

=

=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣1|+|x﹣2|
(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|﹣|a﹣b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中e是自然对数的底数),
(1)记函数 ,且 的单调增区间;
(2)若对任意 成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点处下上至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到,假设缆车匀速直线运动的速度为,山路长为1260,经测量

1)求索道的长;

2)问:乙出发多少后,乙在缆车上与甲的距离最短?

3)为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)求不等式 的解集;
(2)若关于 的不等式 的解集为 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F1、F2为椭圆的两个焦点,以F2为圆心作圆F2 , 已知圆F2经过椭圆的中心,且与椭圆相交于M点,若直线MF1恰与圆F2相切,则该椭圆的离心率e为(  )
A. ﹣1
B.2﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某高校大学5000名新生的视力情况,随机地抽查了该校100名进校新生的视力情况,得到其频率分布直方图如右图,若规定视力低于5.0的学生属[于近视学生,则估计该校新生中不是近视的人数约为(  )

A.300人
B.400人
C.600人
D.1000人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)= (e是自然对数的底数),f(x)的图象在x=﹣ 处的切线方程为y=
(1)求a,b的值;
(2)探究直线y= .是否可以与函数g(x)的图象相切?若可以,写出切点的坐标,否则,说明理由;
(3)证明:当x∈(﹣∞,2]时,f(x)≤g(x).

查看答案和解析>>

同步练习册答案