精英家教网 > 高中数学 > 题目详情

函数f(x)=-x(x-a)2(x∈R),
(1)当a>0时,求函数f(x)的极大值和极小值;
(2)当a>3时,求对于任意实数k∈[-1,0],使得不等式f(k-cosx)≥f(k2-cos2x)恒成立的x取值范围.

解:(1)∵f(x)=-x(x-a)2=-x3+2ax2-a2x,
∴f'(x)=-3x2+4ax-a2=-(3x-a)(x-a),
令f'(x)=0,
解得或x=a.…(3分)
∵a>0,∴当x变化时,f'(x)的正负如下表:
xa(a,+∞)
f'(x)-0+0-
…(6分)
因此,函数f(x)在处取得极小值,且
函数f(x)在x=a处取得极大值f(a),且f(a)=0.…(8分)
(2)由a>3,得
当k∈[-1,0]时,k-cosx≤1,k2-cos2x≤1.
由(1)知,f(x)在(-∞,1]上是减函数,
要使f(k-cosx)≥f(k2-cos2x),
只要k-cosx≤k2-cos2x(x∈R),
即cos2x-cosx≤k2-k对一切k∈[-1,0]恒成立.
令g(k)=k2-k,当k∈[-1,0],
g(k)min=0,
∴cos2x-cosx≤0,解得0≤cosx≤1,
…(12分)
分析:(1)由f(x)=-x(x-a)2,知f'(x)=-3x2+4ax-a2,令f'(x)=0,解得或x=a.列表讨论,能求出函数f(x)的极大值和极小值.
(2)由a>3,得,当k∈[-1,0]时,k-cosx≤1,k2-cos2x≤1.由f(x)在(-∞,1]上是减函数,知要使f(k-cosx)≥f(k2-cos2x),只要cos2x-cosx≤k2-k对一切k∈[-1,0]恒成立.由此能求出使得不等式f(k-cosx)≥f(k2-cos2x)恒成立的x取值范围.
点评:本题考查求函数f(x)的极大值和极小值,求对于任意实数k∈[-1,0],使得不等式f(k-cosx)≥f(k2-cos2x)恒成立的x取值范围.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案