精英家教网 > 高中数学 > 题目详情

已知函数上是增函数
(1)求实数的取值集合
(2)当取值集合中的最小值时, 定义数列;满足, , 设, 证明:数列是等比数列, 并求数列的通项公式.
(3)若, 数列的前项和为, 求.

(1) (2) (3)

解析试题分析:(1)因为函数上是增函数, 只需满足恒成立,  即          4分
(2),

   
,
是等比数列, 首项为, 公比为3 
    8分
(3)由(2)可知
,
两式相减得       
    12分
考点:函数单调性,数列求通项求和
点评:第一问由单调性可转化为导数的取值范围,第二问是通过构造新数列转化为等差或等比数列,第三问求和时数列通项是关于n的一次函数式与指数式的形式,这样的数列一般采用错位相减法求和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知=2,点()在函数的图像上,其中=.
( 1 ) 证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,满足
(1)令,证明:
(2)求数列的通项公式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是首项a1=4,公比q≠1的等比数列,Sn是其前n项和,且成等差数列.
(1)求公比q的值;
(2)求Tn=a2+a4+a6+…+a2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足S n + a n= 2n +1.
(1)写出a1a2a3, 并推测a n的表达式;
(2)用数学归纳法证明所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对任意都有
(Ⅰ)求的值.
(Ⅱ)数列满足:=+,数列是等差数列吗?请给予证明;
(Ⅲ)令试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律。下图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14个数与第15个数的比为,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35。显然,1+3+6+10+15=35。事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数。试用含有m、k的数学公式表示上述结论,并给予证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}(n∈N*)中,已知a1=1,a2k=-aka2k-1=(-1)k+1akk∈N*. 记数列{an}的前n项和为Sn.
(1)求S5S7的值;
(2)求证:对任意n∈N*,Sn≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列中,,数列满足
(1)求证:数列是等差数列;
(2)求数列中的最大项和最小项,并说明理由。

查看答案和解析>>

同步练习册答案