精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,自一个顶点出发的三条棱长分别为3,4,5,求A点沿长方体表面到C1的最短距离为
74
74
分析:求A点到C1的最短距离,由两点之间直线段最短,想到需要把长方体剪开再展开,把A到C1的最短距离转化为求三角形的边长问题,根据实际图形,应该有三种展法,展开后利用勾股定理求出每一种情况中AC1的长度,比较三个值的大小后即可得到结论.
解答:解:长方体ABCD-A1B1C1D1的表面可有三种不同的方法展开,如图所示.
不妨设AB=5,AD=4,AA1=3.
表面展开后,依第一个图形展开,AC1=
(3+4)2+52
=
74

依第二个图形展开,AC1=
(5+4)2+32
=3
10

依第三个图形展开,AC1=
(5+3)2+42
=4
5

三者比较,得A点沿长方形表面到C1的最短距离为
74

故答案为:
74
点评:本题考查了点、线、面之间的距离,考查了学生的空间想象能力和思维能力,考查了数学转化思想方法,解答的关键是想到对长方体的三种展法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案