A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答 解:作出不等式对应的平面区域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直线y=-$\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}x+\frac{z}{2}$经过点B(1,1)时,直线y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此时z最大.
此时z的最大值为z=1+2×1=1+2=3,
故选:C.
点评 本题主要考查线性规划的应用,利用数形结合确定z取得最大值对应的最优解是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{2}}}{4}a$2 | B. | $\frac{{\sqrt{2}}}{2}a$2 | C. | $2\sqrt{2}a$2 | D. | $\frac{{2\sqrt{2}}}{3}a$2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}-\frac{1}{2n+1}$ | B. | $\frac{1}{3}-\frac{1}{2n+3}$ | C. | $\frac{1}{6}-\frac{1}{4n+3}$ | D. | $\frac{1}{6}-\frac{1}{4n+6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com