A. | $\frac{f(a)+f(b)}{2}$>$\frac{f(b)-f(a)}{b-a}$ | B. | $\frac{f(a)+f(b)}{2}$=$\frac{f(b)-f(a)}{b-a}$ | C. | $\frac{f(a)+f(b)}{2}$<$\frac{f(b)-f(a)}{b-a}$ | D. | 无法确定 |
分析 作差,构造函数g(x)=x+2+(x-2)ex(x>0),利用导数研究其单调性即可比较大小.
解答 解:$\frac{f(a)+f(b)}{2}$-$\frac{f(b)-f(a)}{b-a}$=$\frac{(b-a+2)+(b-a-2{)e}^{b-a}}{2(b-a)}$ea,
令g(x)=x+2+(x-2)ex(x>0),则g′(x)=1+(x-1)ex,
g′′(x)=xex>0,∴g′(x)在(0,+∞)上单调递增,且g′(0)=0,
∴g′(x)>0,∴g(x)在(0,+∞)上单调递增,
而g(0)=0,∴在(0,+∞)上,有g(x)>g(0)=0.
∵当x>0时,g(x)=x+2+(x-2)•ex>0,且a<b,
∴$\frac{(b-a+2)+(b-a-2{)e}^{b-a}}{2(b-a)}$ea>0,
即当a<b时,$\frac{f(a)+f(b)}{2}$>$\frac{f(b)-f(a)}{b-a}$,
故选:A.
点评 本题考查了比较两个实数的大小等基础知识,考查了分类讨论的思想方法、转化与化归思想方法,考查了推理能力和计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | lg(m-n)>0 | B. | ($\frac{1}{2}$)m<($\frac{1}{2}$)n | C. | $\frac{n}{m}$<1 | D. | m2>n2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|3≤x<4} | B. | {x|0≤x<3} | C. | {3} | D. | {3,4} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com