分析 (1)∵AC⊥BD,AC⊥BE,∴AC⊥平面BDE,∴AC⊥DE.
(2)连接OE,则OE⊥AC,AC⊥AP,∴OE∥AP..∴∠OED(或其补角)就是异面直线ED与PA所成的角.
解△OED即可求异面直线ED与PA所成的角.
解答 解:(1)∵AC⊥BD,AC⊥BE,BD∩BE=E,∴AC⊥平面BDE,∴AC⊥DE.
(2)连接OE,则OE⊥AC,AC⊥AP,∴OE∥AP.∴∠OED(或其补角)就是异面直线ED与PA所成的角.
在等腰梯形ABCD中,计算可得CO=1,OA=2,∴OE=2,又OD=2,且△OED为直角三角形,∴异面直线ED与PA所成的角为45°.
点评 本题考查了线线垂直的判定,异面直线所成的角,考查学生分析解决问题的能力,属于中档题..
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a≥2+$\sqrt{3}$ | B. | 0<a<2-$\sqrt{3}$ | C. | a≥2+$\sqrt{3}$或0<a<1 | D. | a≥2+$\sqrt{3}$或0<a<2-$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | i≥7? | B. | i>7? | C. | i≥6? | D. | i<6? |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | -4 | C. | 6 | D. | -6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com