精英家教网 > 高中数学 > 题目详情
18.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与E相交于A,B两点,且|AB|=$\frac{4a}{3}$
(Ⅰ)求E的离心率
(Ⅱ)设点P(0,-1)满足|PA|=|PB|,求E的方程.

分析 (I)由题意可得直线l的方程为:y=x+c,A(x1,y1),B(x2,y2).与椭圆方程联立化为:(a2+b2)x2+2ca2x+a2c2-a2b2=0,利用根与系数的关系代入|AB|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\frac{4a}{3}$,化简即可得出.
(II)设线段AB的中点M(x0,y0).可得x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2c}{3}$.y0=x0+c.根据点P(0,-1)满足|PA|=|PB|,可得PM⊥AB,kPM•kAB=-1,解得c.a2=b2+c2=2b2,解得b,a.

解答 解:(I)由题意可得直线l的方程为:y=x+c,A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{y=x+c}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,化为:(a2+b2)x2+2ca2x+a2c2-a2b2=0,
∴x1+x2=-$\frac{2c{a}^{2}}{{a}^{2}+{b}^{2}}$,x1•x2=$\frac{{a}^{2}{c}^{2}-{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$,
|AB|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2[\frac{4{c}^{2}{a}^{4}}{({a}^{2}+{b}^{2})^{2}}-\frac{4({a}^{2}{c}^{2}-{a}^{2}{b}^{2})}{{a}^{2}+{b}^{2}}]}$=$\frac{4a}{3}$,
化为:a2=2b2
∴e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$.
(II)设线段AB的中点M(x0,y0).
x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{c{a}^{2}}{{a}^{2}+{b}^{2}}$=-$\frac{2c}{3}$.y0=x0+c=$\frac{1}{3}$c.
∵点P(0,-1)满足|PA|=|PB|,∴PM⊥AB,
∴kPM•kAB=$\frac{-1-\frac{1}{3}c}{0+\frac{2c}{3}}$×1=-1,解得c=3.
∴a2=b2+c2=2b2,解得b=c=3,a2=18.
∴椭圆E的方程为$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{9}$=1.

点评 本题考查了椭圆的标准方程及其性质、一元二次方程根与系数的关系、弦长公式、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.下列各数210(6)、1000(4)、111111(2)中最小的数是111111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,输入x=-1,n=5,则输出s=(  )
A.-2B.-3C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若等差数列{an}的前7项和S7=21,且a2=-1,则a6=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.四棱柱ABCD-A1B1C1D1中,∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD=1,则AC1=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=(x+1,2),$\overrightarrow{b}$=(4,-7),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则x的取值范围为($\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xoy中,A,B,C均为⊙O上的点,其中A($\frac{3}{5}$,$\frac{4}{5}$),C(1,0),点B在第二象限.
(1)设∠COA=θ,求tan2θ的值;
(2)若△AOB为等边三角形,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知样本数据a1,a2,a3,a4,a5的方差s2=$\frac{1}{5}$(a12+a22+a32+a42+a52-80),则样本数据2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为9或-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.
(1)求x+y能被3整除的概率;
(2)规定:若x+y≥10,则小王赢,若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.

查看答案和解析>>

同步练习册答案