精英家教网 > 高中数学 > 题目详情
16.若直线l在x轴的截距与在y轴的截距都是负数,则(  )
A.l的倾斜角为锐角且不过第一象限B.l的倾斜角为钝角且不过第一象限
C.l的倾斜角为锐角且不过第四象限D.l的倾斜角为钝角且不过第四象限

分析 根据题意,画出图形,结合图形,利用倾斜角与截距的定义即可得出结论.

解答 解:直线l在x轴的截距与在y轴的截距都是负数,如图所示,
则直线l的倾斜角为钝角,且不过第一象限.

故选:B.

点评 本题考查了直线的倾斜角与截距的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数$f(x)={log_{\frac{1}{2}}}({x^2}-2x-3)$的单调减区间是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知幂函数f(x)=xa的图象经过点$(\sqrt{2},2)$,则f(1-x)的单调增区间为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知四面体P-ABC,其中△ABC是边长为6的等边三角形,PA⊥平面ABC,PA=4,则四面体P-ABC外接球的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1所示,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0),与y轴交与点C(0,-3).
(1)求抛物线的解析式;
(2)在BC下方的抛物线上是否存在点E,使△EBC的面积最大,如果存在,请求出最大面积及点E的坐标;如果不存在,请说明理由.
(3)如图2所示,过点C作CP∥AB交抛物线与点P,在抛物线上是否存在点M,将线段PM绕点P旋转90°后,点M恰好落在x轴上的点M1处,如果存在,请求出点M的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,向量$\overrightarrow{a}$,$\overrightarrow{b}$的位置如图所示,已知|$\overrightarrow{a}$|=|$\overrightarrow{OA}$|=4,|$\overrightarrow{b}$|=|$\overrightarrow{AB}$|=3,且∠AOx=45°,∠OAB=105°,请分别求出向量$\overrightarrow{a}$,$\overrightarrow{b}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,$\frac{a}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{\sqrt{3}}{3}$.
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线1是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算
(1)($\root{3}{2}$×$\sqrt{3}$)6+(2×$\sqrt{2}$)${\;}^{\frac{4}{3}}$-4×($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25
(2)lg4+lg9+2$\sqrt{(lg6)^{2}-2lg6+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设α是第一象限的角,作α的正弦线、余弦线和正切线,并证明下列各式:
(1)sin2α+cos2α=1;
(2)tanα=$\frac{sinα}{cosα}$.

查看答案和解析>>

同步练习册答案