精英家教网 > 高中数学 > 题目详情

如图,正方体ABCD-A1B1C1D1中,点P在BC1上运动,给出下列四个命题:
①三棱锥A-D1PC的体积不变; ②DP⊥BC1;③A1P∥平面ACD1; ④平面PDB1⊥ACD1
其中正确的命题个数有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:①V A-D1PC=V C-AD1P,C到面 AD1P的距离不变,且三角形 AD1P的面积不变.
②,当P 与B重合时,DP与BC1;成60°角,不垂直.
③连接A1B,A1C1容易证明平面BA1C1∥面ACD1,从而由线面平行的定义可得;
④连接DB1,容易证明DB1⊥面ACD1 ,从而可以证明面面垂直.
解答:解:对于①,V A-D1PC=V C-AD1P,C到面 AD1P的距离不变,且三角形 AD1P的面积不变.∴三棱锥A-D1PC的体积不变; 正确;
②连接DB,DC1,可知△DBC1是正三角形,当且仅当P为BC1中点时,DP⊥BC1,考虑特殊位置,当P 与B重合时,DP与BC1成60°角,不垂直.
错误
③连接A1B,A1C1容易证明平面BA1C1∥面ACD1,从而由线面平行的定义可得 A1P∥平面ACD1;.正确.
④连接DB1,根据正方体的性质,有DB1⊥面ACD1 ,DB1?平面PDB1 从而可以证明平面PDB1⊥ACD1;正确.
正确的命题个数有 3个.
故选C.
点评:本题考查三棱锥体积求法中的等体积法;线面平行、垂直,面面平行、垂直的判定,要注意使用转化的思想,及特殊和一般的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案