精英家教网 > 高中数学 > 题目详情
已知圆M:(x-2+y2=r2=r2(r>0).若椭圆C:+=1(a>b>0)的右顶点为圆M的圆心,离心率为
(I)求椭圆C的方程;
(II)若存在直线l:y=kx,使得直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点,点G在线段AB上,且|AG|=|BH|,求圆M半径r的取值范围.
【答案】分析:(I)设椭圆的焦距为2c,由椭圆右顶点为圆心可得a值,进而由离心率可得c值,根据平方关系可得b值;
(II)由点G在线段AB上,且|AG|=|BH|及对称性知点H不在线段AB上,所以要使|AG|=|BH|,只要|AB|=|GH|,设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程消掉y得x的二次方程,利用韦达定理及弦长公式可得|AB|,在圆中利用弦心距及勾股定理可得|GH|,根据|AB|=|GH|得r,k的方程,分离出r后按k是否为0进行讨论,借助基本函数的范围即可求得r范围;
解答:解:(I)设椭圆的焦距为2c,
由椭圆右顶点为圆M的圆心(,0),得a=
,所以c=1,b=1.
所以椭圆C的方程为:
(II)设A(x1,y1),B(x2,y2),
由直线l与椭圆C交于两点A,B,则
所以(1+2k2)x2-2=0,则x1+x2=0,
所以=
点M(,0)到直线l的距离d=
则|GH|=2
显然,若点H也在线段AB上,则由对称性可知,直线y=kx就是y轴,矛盾,

所以要使|AG|=|BH|,只要|AB|=|GH|,
所以=4
==2
当k=0时,r=
当k≠0时,<2(1+)=3,
又显然>2,所以
综上,
点评:本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,考查分类讨论思想,考查学生分析问题解决问题的能力,弦长公式、韦达定理是解决该类问题的基础知识,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆M:(x+数学公式2+y2=数学公式的圆心为M,圆N:(x-数学公式2+y2=的圆心为N,一动圆与圆M内切,与圆N外切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点Q,使得∠MQN为钝角?若存在,求出点Q横坐标的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:0128 模拟题 题型:解答题

已知圆M:(x+2+y2=36,定点N(,0),点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
(1)求点G的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东聊城市东阿县曹植培训学校高三(上)12月月考数学试卷(解析版) 题型:解答题

(理)已知圆M:(x+2+y2=36,定点N(),点P为圆M上的动点,点G在MP上,且满足|GP|=|GN|
(1)求点G的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年福建省厦门市双十中学高考考前热身数学试卷(理科)(解析版) 题型:解答题

已知圆M:(x+2+y2=的圆心为M,圆N:(x-2+y2=的圆心为N,一动圆与圆M内切,与圆N外切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点Q,使得∠MQN为钝角?若存在,求出点Q横坐标的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案