精英家教网 > 高中数学 > 题目详情
函数y=ax(a>0,且a≠1)在区间[1,2]上的最大值与最小值的差是
1
4
,则实数a的值是(  )
分析:根据指数函数为单调函数,故函数y=ax(a>0,且a≠1)在区间[1,2]上的最大值与最小值的差是
1
4
,即f(1)与f(2)差的绝对值为
1
4
,由此构造方程,解方程可得答案.
解答:解:y=ax(a>0,且a≠1)在区间[1,2]上为单调函数
又∵y=ax(a>0,且a≠1)在区间[1,2]上
故|a-a2|=
1
4

即a-a2=
1
4
或a-a2=-
1
4

解得a=
1
2
或a=
1+
2
2
或a=
1-
2
2
(舍去)
故实数a的值是a=
1
2
或a=
1+
2
2

故选C
点评:本题考查的知识点是指数函数单调性的应用,熟练掌握指数函数的单调性是解答的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
(2)函数y=x3与y=3x的值域相同;
(3)函数f(x)=
5+4x-x2
的单调递增区间为(-∞,2];
(4)函数y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函数.
其中正确命题的序号是
(1)(4)
(1)(4)
(把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax(a>0,a≠1)在[1,2]上的最大值比最小值大
a3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①命题p:?x∈R,tanx=2;命题q:?x∈R,x2-x+1≥0.则命题“p且q”是真命题;
②“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件;
③函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
④函数y=
1
2
+
1
2x-1
与y=lg(x+
x2+1
)都是奇函数.
其中不正确的命题序号是
(把你认为不正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列叙述正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的个数是(  )
①f(x)=x与g(x)=2log 2x是同一函数.
②函数y=ax(a>0,a≠1),x∈N的图象是一些孤立的点.
③空集是任何集合的真子集.
④函数y=f(x)是定义在R上的函数,且f(x)≠0,则函数y=f(x)的图象不可能关于x轴对称.

查看答案和解析>>

同步练习册答案