精英家教网 > 高中数学 > 题目详情

【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).

(1)问类、类工人各抽查了多少工人,并求出直方图中的

(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);

(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表

短期培训

长期培训

合计

能力优秀

能力不优秀

合计

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

【答案】(1)0.024;(2)可以在犯错误概率不超过的前提下,认为生产能力与培训时间长短有关

【解析】试题分析:(1)由茎叶图知A类工人中抽查人数为25名,B类工人中应抽查100﹣25=75,由频率分布直方图求出x;

(2)由茎叶图知A类工人生产能力的中位数为122,由(1)及频率分布直方图,估计B类工人生产能力的平均数;

(3)求出K2,与临界值比较,即可得出结论.

试题解析:

解:(1)由茎叶图知A类工人中抽查人数为25,

∴B类工人中应抽查100-25=75(名).

由频率分布直方图得 (0.008+0.02+0.048+x)10=1,得x=0.024.

(2)由茎叶图知A类工人生产能力的中位数为122

由(1)及频率分布直方图,估计B类工人生产能力的平均数为

1150.00810+1250.02010+1350.04810+1450.02410=133.8

(3)由(1)及所给数据得能力与培训的22列联表,

短期培训

长期培训

合计

能力优秀

8

54

62

能力不优秀

17

21

38

合计

25

75

100

由上表得>10.828

因此,可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:(1)证明线线垂直则需证明线面垂直,根据题意易得然后根据等边三角形的性质可得,因此平面,从而得证(2)先找到EH什么时候最短,显然当线段长的最小时, ,在中, ,∴,由中, ,∴.然后建立空间直角坐标系,写出两个面法向量再根据向量的夹角公式即可得余弦值

解析:(1)证明:∵四边形为菱形,

为正三角形.又的中点,∴.

,因此.

平面 平面,∴.

平面 平面

平面.又平面,∴.

(2)如图, 上任意一点,连接 .

当线段长的最小时, ,由(1)知

平面 平面,故.

中,

中, ,∴.

由(1)知 两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又 分别是 的中点,

可得

所以 .

设平面的一法向量为

因此

,则

因为 ,所以平面

为平面的一法向量.又

所以 .

易得二面角为锐角,故所求二面角的余弦值为.

型】解答
束】
20

【题目】2018湖北七市(州)教研协作体3月高三联考已知椭圆 的左顶点为,上顶点为,直线与直线垂直,垂足为点,且点是线段的中点.

I)求椭圆的方程;

II)如图,若直线 与椭圆交于 两点,点在椭圆上,且四边形为平行四边形,求证:四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直角梯形中,分别是上的点,且.沿将四边形翻折至,连接,得到多面体,且

Ⅰ)求多面体的体积;

Ⅱ)求证:平面⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017吉林延边州模拟)已知在△ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.

(1)求动点A的轨迹M的方程;

(2)P为轨迹M上的动点,△PBC的外接圆为☉O1,当点P在轨迹M上运动时,求点O1x轴的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).

(1)问类、类工人各抽查了多少工人,并求出直方图中的

(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);

(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表

短期培训

长期培训

合计

能力优秀

能力不优秀

合计

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于下列四个命题:

p1:x0(0,+∞),;

p2:x0(0,1),lox0>lox0;

p3:x(0,+∞),<lox;

p4:x<lox.

其中的真命题是(  )

A. p1,p3 B. p1,p4

C. p2,p3 D. p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的方程是,将向上平移2个单位得到曲线. 

(1)求曲线的极坐标方程;

(2)直线的参数方程为为参数),判断直线与曲线的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3

1)求数列{an}的通项公式;

2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

同步练习册答案