精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的三棱柱中,平面的中点为,若线段上存在一点使得平面.

1)求的长;

2)求二面角的大小.

【答案】1;(2

【解析】

1)根据题意,建立空间直角坐标系的条件是成熟的,因此用向量法通过线面垂直来求解AB的长度;

2)由(1)可以知几何体上每个点的坐标,求出两个平面的法向量,通过向量来求解.

1)由题意知两两垂直.

点为原点,分别为轴,轴,轴建立空间直角坐标系

,由题意

所以

设面的法向量为

所以,可得

,则//

所以.

2)由(1)得平面的一个法向量为

设平面的法向量为

可得

向量的夹角大小为,又该二面角的平面角为锐角,

故二面角所成角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是椭圆上的点,是焦点,离心率.

1)求椭圆的标准方程;

2)设是椭圆上的两点,且,问线段的垂直平分线是否过定点?若过定点,求出此定点的坐标,若不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点作直线交抛物线于两点,已知点为坐标原点.的最小值为3.

(1)求抛物线的方程;

(2)过点作直线,交抛物线于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数的部分图象,将函数f(x)的图象向右平移个单位长度得到g(x)的图象,给出下列四个命题:

①函数f(x)的表达式为

②g(x)的一条对称轴的方程可以为

③对于实数m,恒有

④f(x)+g(x)的最大值为2.其中正确的个数有(  )

A. 1个B. 2个C. 3个D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e为自然对数的底数).

(1)讨论函数f(x)的单调性及最值;

(2)若a>0,且对x1,x2∈[0,2],f(x1+1)≥g(x2)+a﹣1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

试销单价(元)

4

5

6

7

8

9

产品销量(件)

q

84

83

80

75

68

已知.

(Ⅰ)求出的值;

(Ⅱ)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程

(Ⅲ)用表示用(Ⅱ)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取2个,求“好数据”至少有一个的概率.

(参考公式:线性回归方程中的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,且.

1)求的解析式,并判断零点的个数;

2)若,且对任意的恒成立,求k的最大值.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,如果都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)

①存在这样的直线,既不与坐标轴平行又不经过任何整点

②如果都是无理数,则直线不经过任何整点

③直线经过无穷多个整点,当且仅当经过两个不同的整点

④直线经过无穷多个整点的充分必要条件是:都是有理数

⑤存在恰经过一个整点的直线

查看答案和解析>>

同步练习册答案