精英家教网 > 高中数学 > 题目详情
3.函数f(x)=lg$\frac{1-x}{1+x}$在区间(-1,1)上是(  )
A.奇函数、增函数B.偶函数、增函数C.奇函数、减函数D.偶函数、减函数

分析 分析函数f(x)=lg$\frac{1-x}{1+x}$在区间(-1,1)上的单调性和奇偶性,进而可得答案.

解答 解:∵f(x)=lg$\frac{1-x}{1+x}$,
∴f(-x)=lg$\frac{1+x}{1-x}$=lg($\frac{1-x}{1+x}$)-1=-lg$\frac{1-x}{1+x}$=-f(x),
故函数f(x)=lg$\frac{1-x}{1+x}$在区间(-1,1)上是奇函数;
又由y=$\frac{2}{1+x}$在区间(-1,1)上是减函数,
故f(x)=lg$\frac{1-x}{1+x}$=lg($\frac{2}{1+x}$-1)为减函数,
故选;C.

点评 本题考查的知识点是对数函数的图象和性质,函数的奇偶性与函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若指数函数f(x)=ax在[1,2]上的最大值与最小值的差为$\frac{a}{2}$,则a=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{1}{2}$或$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点点分别为F1,F2,点P是C上的点,PF1⊥F1F2,∠PF2F1=45°,则C的离心率为(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}-1$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1内有一点P(3,1),F为双曲线的右焦点,在双曲线上有一点M,使|MP|+$\frac{2}{3}$|MF|的值最小,则这个最小值为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b∈N*),两焦点是F1、F2,点P在双曲线上,又|PF1|、|F1F2|、|PF2|成等比数列,且|PF2|<4,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=loga(1-x)+loga(x+3),其中0<a<1,记函数f(x)的定义域为D.
(1)求函数f(x)的定义域D;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列直线中,倾斜角最大的是(  )
A.x+2y=1=0B.2x-y-1=0C.y=xD.y=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.甲、乙两名同学在5次英语口语测试中的成绩统计如图的茎叶图所示.
(1)分别在甲乙的5次成绩中任取一次,至少有一个成绩高于80的概率;
(2)若将频率视为概率,对学生甲和乙在今后的两次英语口语竞赛成绩进行预测,记两人成绩都高于85分的次数为ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设log83=a,log35=b.试用a、b表示lg5.

查看答案和解析>>

同步练习册答案