精英家教网 > 高中数学 > 题目详情
已知正项数列{an}满足:a1=1,且(n+1)an+12=nan2-an+1an,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{
1
an
}的前n项积为Tn,求证:当x>0时,对任意的正整数n都有Tn
xn
ex
分析:(I)先对(n+1)an+12-nan2+an+1an=0进行化简得到 an+1=
-1±
1+4n(n+1)
2(n+1)
an=
n
n+1
an
,再由累乘法可得到数列的通项公式是an
(II)根据(I)求出Tn,利用数学归纳法证明即可,证明过程中注意数学归纳法的步骤和导数的灵活应用.
解答:解:(I)∵(n+1)an+12-nan2+an+1an=0
an+1=
-1±
1+4n(n+1)
2(n+1)
an=
n
n+1
an
(另解-an不合题意舍去),
a2
a1
a3
a2
an
an-1
=
1
2

an
a1
=
1
n
an=
1
n
,n∈N+

(II)由(I)得:Tn=n!,
当x>0时,Tn
xn
ex
等价于xn<n!ex  ①
以下用数学归纳法证明:
①当n=1时,要证x<ex,令g(x)=ex-x,
则g′(x)=ex-1>0,
∴g(x)>g(0)=1>0,即x<ex 成立;
②假设当n=k时,①式成立,即xk<k!ex,那么当n=k+1时,
要证xk+1<(k+1)!ex也成立,
令h(x)=(k+1)!ex-xk+1,则h′(x)=(k+1)!ex-((k+1)xk
=(k+1)(k!ex-xk),
由归纳假设得:h′(x)>0,
∴h(x)>h(0)=(k+1)!>0,
即xk+1<(k+1)!ex也成立,
由①②即数学归纳法原理得原命题成立.
点评:本题主要考查数列递推关系式的应用和累乘法.求数列通项公式的一般方法--公式法、累加法、累乘法、构造法等要熟练掌握,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案