精英家教网 > 高中数学 > 题目详情

【题目】如图,水平放置的正四棱柱形玻璃容器和正四棱台形玻璃容器的高均为32cm,容器的底面对角线AC的长为10cm,容器的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器和容器中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将l放在容器中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

(2)将l放在容器中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

【答案】(1)记玻璃棒与交点为H,则没入水中的部分为(cm).

(2)

记玻璃棒与交点为Q,则

没入水中的部分为(cm)

【解析】

:(1)由正棱柱的定义,平面所以平面平面.

记玻璃棒的另一端落在上点处.

因为

所以,从而

与水面的焦点为,过P1Q1AC, Q1为垂足,

则 P1Q1平面 ABCD,故P1Q1=12,

从而 AP1= .

答:玻璃棒l没入水中部分的长度为16cm.

( 如果将没入水中部分冶理解为水面以上部分冶,则结果为24cm)

(2)如图,O,O1是正棱台的两底面中心.

由正棱台的定义,OO1平面 EFGH, 所以平面E1EGG1平面EFGH,O1OEG.

同理,平面 E1EGG1平面E1F1G1H1,O1OE1G1.

记玻璃棒的另一端落在GG1上点N处.

过G作GKE1G,K为垂足, 则GK =OO1=32.

因为EG = 14,E1G1= 62,

所以KG1= ,从而.

.

因为,所以.

中,由正弦定理可得,解得.

因为,所以.

于是.

记EN与水面的交点为P2,过 P2作P2Q2EG,Q2为垂足,则 P2Q2平面 EFGH,故P2Q2=12,从而 EP2=.

答:玻璃棒l没入水中部分的长度为20cm.

(如果将没入水中部分冶理解为水面以上部分冶,则结果为20cm)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若函数处的切线方程为,求的值;

(II)讨论方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料分别为A、B两种规格的金属板,每张面积分别为2m2与3m2 . 用A种规格的金属板可造甲种产品3个,乙种产品5个;用B种规格的金属板可造甲、乙两种产品各6个.问A、B两种规格的金属板各取多少张,才能完成计划,并使总的用料面积最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N点P满足

(1) 求点P的轨迹方程;

(2)设点 在直线x=-3上,且.证明过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sinxcosx+2cos2x﹣1(x∈R) (Ⅰ)求函数f(x)的最小正周期及在区间[0, ]上的最大值和最小值;
(Ⅱ)若f(x0)= ,x0∈[ ],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的偶函数f(x)满足对于任意实数x,都有f(1+x)=f(1﹣x),且当0≤x≤1时,f(x)=3x+1
(1)求证:函数f(x)是周期函数;
(2)当x∈[1,3]时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,设M(x1 , y1)、N(x2 , y2)为不同的两点,直线l的方程为ax+by+c=0,设 .有下列四个说法:
①存在实数δ,使点N在直线l上;
②若δ=1,则过M、N两点的直线与直线l平行;
③若δ=﹣1,则直线l经过线段MN的中点;
④若δ>1,则点M、N在直线l的同侧,且直线l与线段MN的延长线相交.
上述说法中,所有正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为公差不为0的等差数列{an}的前n项和,且a1=1,S1 , S2 , S4成等比数列.
(1)求数列{an}的通项公式;
(2)设 ,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案