(本小题满分分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ) 测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如右图:
(ⅰ) 统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表.据此,计算这100名学生身高数据的期望及标准差(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,据此,估计该年级身高在范围中的学生的人数.
(Ⅲ) 如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表
| 身高达标 | 身高不达标 | 总计 |
积极参加体育锻炼 | 40 | | |
不积极参加体育锻炼 | | 15 | |
总计 | | | 100 |
P(Kk) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
科目:高中数学 来源:2011届湖南省长沙市第一中学高三第四次月考理科数学试卷 题型:解答题
(本小题满分13分)某企业的产品以往专销欧美市场,在全球金融风暴的影响下,欧美市场的销量受到严重影响,该企业在政府的大力扶助下积极开拓国内市场,并基本形成了市场规模;自2009年9月以来的第n个月(2009年9月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量与出口量的和)分别为bn、cn和an(单位:万件),依据销售统计数据发现形成如下营销趋势:bn + 1 =" a" an,cn + 1 =" an" + b an2 (其中a、b为常数),已知a1 = 1万件,a2 = 1.5万件,a3 = 1.875万件.
(1)求a,b的值,并写出an + 1与an满足的关系式;
(2)试用你所学的数学知识论证销售总量逐月递增且控制在2万件内;
(3)试求从2009年9月份以来的第n个月的销售总量an关于n的表达式.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年辽宁省高三第五次模拟理数试卷(解析版) 题型:解答题
(本小题满分12分)
某大学高等数学老师上学期分别采用了两种不同的教学方式对甲、乙两个大一新生班进行教改试验(两个班人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名同学的上学期数学期末考试成绩,得到茎叶图如下:
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)从乙班这20名同学中随机抽取两名高等数学成绩不得低于85分的同学,求成绩为90分的同学被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
|
甲班 |
乙班 |
合计 |
优秀 |
|
|
|
不优秀 |
|
|
|
合计 |
|
|
|
下面临界值表仅供参考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:其中)
(Ⅳ)从乙班高等数学成绩不低于85分的同学中抽取2人,成绩不低于90分的同学得奖金100元,否则得奖金50元,记为这2人所得的总奖金,求的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高二第一次月考理科数学试卷(解析版) 题型:解答题
(本小题满分12分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.
(1)下表是年龄的频数分布表,求正整数的值;
区间 |
[25,30) |
[30,35) |
[35,40) |
[40,45) |
[45,50] |
人数 |
50 |
50 |
150 |
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山西省太原市高三2月月考文科数学 题型:解答题
(本小题满分12分)
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
[来源:学|科|网] |
合计 |
|
|
50[] |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,
还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、
喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求和不全被选
中的概率.
下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
查看答案和解析>>
科目:高中数学 来源:北京朝阳区09-10学年高一第二学期期末考试数学试题 题型:解答题
(本小题满分14分)
某校高一年级要从3名男生,,和2名女生,中任选3名代表参加学校的演讲比赛.学
科网 (1)求男生被选中的概率;
(2)求男生和女生至少一人被选中的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com