精英家教网 > 高中数学 > 题目详情
19.若a<b<0,则下列不等式成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.$0<\frac{a}{b}<1$C.ab>b2D.$\frac{b}{a}>\frac{a}{b}$

分析 对4个选项分别进行判断,即可得出结论.

解答 解:取a=-2,b=-1,可得$\frac{1}{a}$$>\frac{1}{b}$,即A不正确;
$\frac{a}{b}$=2,即B不正确;
∵a<b<0,∴ab>b2,正确;
$\frac{a}{b}$=2,$\frac{b}{a}$=$\frac{1}{2}$,即D不正确,
故选C.

点评 本题考查不等式的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sin(2ωx-$\frac{π}{6}$)+2cos2ωx-1(ω>0)的最小正周期为π
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在区间[0,$\frac{7π}{12}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设命题p:?x0∈(0,+∞),lnx0=-1.
命题q:若m>1,则方程x2+my2=1表示焦点在x轴上的椭圆.
那么,下列命题为真命题的是(  )
A.¬qB.(¬p)∨(¬q)C.p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow a=({1,\sqrt{3}}),\overrightarrow b=({3,m})$,若向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,则实数m=3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合M={ b,1},N={ c,1,2},M⊆N,若b,c∈{2,3,4,5,6,7,8,9}则方程x2+bx+c=0有实根的概率为(  )
A.$\frac{5}{7}$B.$\frac{4}{7}$C.$\frac{3}{7}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=x-1,设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=5-x上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2cosx(sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移$\frac{π}{4}$个单位后得到y=g(x)的图象,且y=g(x)在区间$[{0,\frac{π}{4}}]$内的最大值为$\sqrt{2}$.
(1)求实数m的值;
(2)求函数y=g(x)与直线y=1相邻交点间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简$\frac{sin(-x)cos(π-x)}{sin(π+x)cos(2π-x)}-\frac{sin(π-x)cos(π+x)}{{cos(\frac{π}{2}-x)cos(-x)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,D是BC的中点,向量$\overrightarrow{AB}$=a,向量$\overrightarrow{AC}$=b,则向量$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$).(用向量a,b表示)

查看答案和解析>>

同步练习册答案