精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱ABC-A1B1C1,侧面BB1C1C为∠CBB1=60°的菱形,AB=AC1 .

(1)证明:平面AB1C⊥平面BB1C1C

(2)ABB1C,直线AB与平面BB1C1C所成的角为30°,求直线AB1与平面A1B1C 所成角的正弦值.

【答案】(1)见解析(2)

【解析】

(1)推导出,从而平面,由此能证明平面⊥平面(2)以为原点建立空间直角坐标系,由直线与平面所成的角为,得,设,利用向量法能求出直线与平面所成角的正弦值.

证明:(1)连接O,连接AO,侧面为菱形,

,,0的中点,

,⊥平面,平面

∴平面⊥平面

(2)由,,,∴⊥平面ABO,平面ABO, ∴从而AO,OB,两两互相垂直,以O为坐标原点,OB的方向为x轴正方向,建立如图所示空间直角坐标系O-xyz,直线AB与平面所成的角为30°。

AO=1,则,是边长为2的等边三角形

,,,,

,,

是平面的法向量,则

,直线与平面所成的角为

,

直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,其中为椭圆的离心率.

1)求椭圆的方程;

2)直线经过的上顶点且与抛物线交于两点,为椭圆的焦点,直线分别交于点(异于点),(异于点),证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中,分别是的中点,现将沿翻折到位置,使

1)证明:

2)求二面角的平面角的正切值;

3)求与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发100个红包,每个红包金额为x元,.已知在每轮游戏中所产生的100个红包金额的频率分布直方图如图所示.

(1)求a的值,并根据频率分布直方图,估计红包金额的众数;

(2)以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在[1,2)的红包个数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从名学生中选出人去参加一项活动,若甲、乙两名同学不能同时入选,则共有______种不同的选派方案.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2mx+2lnx,m∈R.

(1)探究函数f(x)的单调性;

(2)若关于x的不等式f(x)≤2+3x2在(0,+∞)上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnx

1)若a4,求函数fx)的单调区间;

2)若函数fx)在区间(01]内单调递增,求实数a的取值范围;

3)若x1x2R+,且x1x2,求证:(lnx1lnx2)(x1+2x2≤3x1x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.

(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)

(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为)进行技术分析.求事件“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼吸酒精含量阀值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车,经过反复试验,喝1瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:

该函数模型如下:

根据上述条件,回答以下问题:

(1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?

(2)试计算喝1瓶啤酒后多少小时后才可以驾车?(时间以整小时计算)

(参数数据:

查看答案和解析>>

同步练习册答案