精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的左、右顶点分别为,焦点在轴上的椭圆以为顶点,且离心率为

1)求椭圆的标准方程;

2)设过点的直线交双曲线右支于另一点,交椭圆于另一点,记的面积分别为,若,求直线的斜率.

【答案】(1);(2).

【解析】

(1)由双曲线的性质可得的坐标,即可得椭圆中的值,结合离心率可得的值,进而可得结果.

2)设,直线方程,分别将直线与双曲线的方程,直线与椭圆的方程联立求得的值,根据面积关系可得的中点,即,代入解出的值即可.

(1)由题意得,所以在焦点在轴上椭圆中

又∵椭圆离心率,结合,可得

∴椭圆的方程为.

(2)设,其中

由题意可得直线斜率一定存在,故可设直线方程

又∵,即

又∵,即

的面积分别为,满足

可得的中点,即

代入得

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列中,已知().

1)证明数列是等比数列,并求出数列的通项公式;

2)若(为非零常数),问是否存在整数,使得对任意都有?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市在精准扶贫和生态文明建设的专项工作中,为改善农村生态环境,建设美丽乡村,开展农村生活用水排污管道村村通”.已知排污管道外径为1米,当两条管道并行经过一块农田时,如图,要求两根管道最近距离不小于0.25米,埋没的最小覆土厚度(路面至管顶)不低于0.5.埋设管道前先挖掘一条横截面为等腰梯形的沟渠,且管道所在的两圆分别与两腰相切..

1)为了减少农田的损毁,则当为何值时,挖掘的土方量最少?

2)水管用吊车放入渠底前需了解吊绳的长度,在(1)的条件下计算长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有两台不同机器生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:

该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.

1)完成下列列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为机器生产的产品比机器生产的产品好;

生产的产品

生产的产品

合计

良好以上(含良好)

合格

合计

2)根据所给数据,以事件发生的频率作为相应事件发生的概率,从两台不同机器生产的产品中各随机抽取2件,求4件产品中机器生产的优等品的数量多于机器生产的优等品的数量的概率;

3)已知优秀等级产品的利润为12/件,良好等级产品的利润为10/件,合格等级产品的利润为5/件,机器每生产10万件的成本为20万元,机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?

附:独立性检验计算公式:.

临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)求出的值;

(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在单位正方体中,点P在线段上运动,给出以下四个命题:

异面直线间的距离为定值;

三棱锥的体积为定值;

异面直线与直线所成的角为定值;

二面角的大小为定值.

其中真命题有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在梯形中,,过分别作,垂足分别为.,已知,将梯形沿同侧折起,得空间几何体,如图2.

1)若,证明:平面.

2)若是线段上靠近点的三等分点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.

(1)若当时,,求此时的值;

(2)设,且

(i)试将表示为的函数,并求出的取值范围;

(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于试求两处喷泉间距离的最小值.

查看答案和解析>>

同步练习册答案