精英家教网 > 高中数学 > 题目详情
若f(x)=x2+bx+c,且f(1)=0,f(3)=0
(1)求f(x)的解析式;
(2)求f(-1);
(3)当x∈[0,6]时,求函数的最值.
分析:(1)f(x)=x2+bx+c,且f(1)=0,f(3)=0,知
1+b+c=0
9+3b+c=0
,由此能求出f(x).
(2)由f(x)=x2-4x+3,知f(-1)=(-1)2-4(-1)+3,由此有求出结果.
(3)f(x)=x2-4x+3的图象开口向上,对称轴方程是x=2,由此能求出当x∈[0,6]时,函数的最值.
解答:解:(1)∵f(x)=x2+bx+c,且f(1)=0,f(3)=0,
1+b+c=0
9+3b+c=0

解得b=-4,c=3,
∴f(x)=x2-4x+3.
(2)∵f(x)=x2-4x+3,
∴f(-1)=(-1)2-4(-1)+3=1+4+3=8.
(3)∵f(x)=x2-4x+3的图象开口向上,对称轴方程是x=2,
∴当x∈[0,6]时,f(x)min=f(2)=4-8+3=-1,
f(x)max=f(6)=36-24+3=15.
点评:本题考查二次函数的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、若f(x)=x2-2x-4lnx则f(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若 f(x)=-x2+2ax 与g(x)=
a
x+1
 在区间[1,2]上都是减函数,则a的取值范围是(  )
A、(-1,0)∪(0,1)
B、(-1,0)∪(0,1]
C、(0,1]
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求f(log2x)的最小值及相应 x的值;
(2)若f(log2x)>f(1)且log2f(x)<f(1),求由x的值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-4x-5.
(1)若f(x)>-8,求x的取值范围;   (2)若f(a)=f(b),且a≠b,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(x2+6x,5x),
b
=(
x
3
,1-x),x∈[0,9]
,若f(x)=
a
b

(1)求f(x) 的单调区间
(2)求f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案