精英家教网 > 高中数学 > 题目详情

【题目】某小区提倡低碳生活,环保出行,在小区提供自行车出租该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用元表示出租自行车的日纯收入日纯收入一日出租自行车的总收入管理费用

求函数的解析式及其定义域;

当租金定为多少时,才能使一天的纯收入最大?

【答案】(1),其定义域为;(2)租金定为元或元时.

【解析】

利用函数关系建立各个取值范围内的净收入与日租金的关系式,写出该分段函数,是解决该题的关键,注意实际问题中的自变量取值范围;

利用一次函数,二次函数的单调性解决该最值问题是解决本题的关键注意自变量取值区间上的函数类型应取每段上最大值的较大的即为该函数的最大值.

解:由题意:当时,

时,

其定义域为

时,

时,

时,

开口向下,对称轴为

13

当租金定为12元或13元时,一天的纯收入最大为220

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2ax2+bx+1(e为自然对数的底数).
(1)若 ,求函数F(x)=f(x)ex的单调区间;
(2)若b=e﹣1﹣2a,方程f(x)=ex在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且仅有两个整数解,则实数a的取值范围为(
A.(﹣ ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是正方体的棱上两点,且,给出下列四个命题:①三棱锥的体积为定值;②异面直线所成的角为;③平面;④直线与平面所成的角为.其中正确的命题为( )

A. ①② B. ②③ C. ①②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且.

(1)确定的解析式;

2)判断并证明上的单调性;

3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个自然数若与它的“反序数”相等,这个自然数就称为一个“魔幻数”如数“”、“”都是“魔幻数”在的元素中,去掉所有的“魔幻数”后,形成一个不含“魔幻数”的子集,中的元素共有______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在图中的算法中,如果输入A=2016,B=98,则输出的结果是

查看答案和解析>>

同步练习册答案