精英家教网 > 高中数学 > 题目详情
已知圆M:2x2+2y2-8x-8y-1=0,直线l:x+y-9=0,过l上一点A作△ABC,使得∠BAC=45°,边AB过圆心M,且B,C在圆M上,求点A纵坐标的取值范围.
分析:先对圆的方程进行配方,求出圆心坐标和半径,由点A在直线l上设出点A的坐标,由题意判断出直线AC与圆M的位置关系,利用几何法列出不等式,由条件和两点之间的距离公式,将点A的坐标代入化简再求出纵坐标的范围.
解答:解:由2x2+2y2-8x-8y-1=0得,圆的标准方程:(x-2)2+(y-2)2=
17
2

∴圆心M(2,2),半径r=
34
2

∵直线l:x+y-9=0,∴设A(9-a,a),
∵B,C在圆M上,
∴直线AC和圆M相交或相切,
∴圆心M到AC的距离d≤r,
∵∠BAC=45°,
d=
2
2
|AM|

因此
2
2
|AM|≤r

2
2
(7-a)2+(a-2)2
34
2

化简得,a2-9a+18≤0,解得3≤a≤6,
故点A的纵坐标的取值范围是[3,6].
点评:本题考查了几何法在直线与圆位置关系中的应用,两点之间的距离公式,以及二次不等式的解法,关键是对条件的分析和相应的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:2x2+2y2-8x-8y-1=0和直线l:x+y-9=0过直线l上一点A作△ABC,使∠BAC=45°,AB过圆心M,且B,C在圆M上.
(1)当A的横坐标为4时,求直线AC的方程;
(2)求点A的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+
5
2+y2=36,定点N(
5
,0),点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0.
(I)求点G的轨迹C的方程;
(II)点F(x,y)在轨迹C上,求2x2+y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省郑州外国语学校高二(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

已知圆M:(x+2+y2=36,定点N(,0),点P为圆M上的动点,点Q在NP上,点G在MP上,且满足=2=0.
(I)求点G的轨迹C的方程;
(II)点F(x,y)在轨迹C上,求2x2+y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省部分重点中学联考高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知圆M:2x2+2y2-8x-8y-1=0和直线l:x+y-9=0过直线 上一点A作△ABC,使∠BAC=45°,AB过圆心M,且B,C在圆M上.
(1)当A的横坐标为4时,求直线AC的方程;
(2)求点A的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省武汉市武昌区高二(上)10月月考数学试卷(解析版) 题型:解答题

已知圆M:2x2+2y2-8x-8y-1=0和直线l:x+y-9=0过直线 上一点A作△ABC,使∠BAC=45°,AB过圆心M,且B,C在圆M上.
(1)当A的横坐标为4时,求直线AC的方程;
(2)求点A的横坐标的取值范围.

查看答案和解析>>

同步练习册答案