精英家教网 > 高中数学 > 题目详情
19.已知数列{an}的前n项和为Sn=n2,n∈N+
(1)证明:数列{an}是等差数列;
(2)设bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和.

分析 (1)由数列的前n项和求出通项,然后利用定义证明数列{an}是等差数列;
(2)把(1)中的通项公式代入bn=2${\;}^{{a}_{n}}$,可得数列{bn}是等比数列,并求出首项和公比,则其前n项和可求.

解答 (1)证明:当n=1时,a1=S1=1;
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}={n}^{2}-(n-1)^{2}=2n-1$,
当n=1时上式成立,
∴an=2n-1,
此时an+1-an=2(n+1)-1-2n+1=2.
∴数列{an}是等差数列;
(2)解:an=2n-1,bn=2${\;}^{{a}_{n}}$=22n-1
∴数列{bn}是以b1=2为首项,公比q=4的等比数列.
∴数列{bn}的前n项和${T}_{n}=\frac{2(1-{4}^{n})}{1-4}=\frac{2}{3}•{4}^{n}-\frac{2}{3}$.

点评 本题考查等差数列、等比数列的前n项和,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在△ABC中,三内角A,B,C满足2B=A+C,求解:tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在四棱锥P-ABCD中,△PAB为等边三角形,AD⊥AB,AD∥BC,平面PAB⊥平面ABCD,E为PD的中点,F为PA中点.
(1)证明:PA⊥平面BEF;
(2)若AD=2BC=2AB=4,求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段图象如图所示,则过点P(ω,φ),且斜率为A的直线方程是(  )
A.y-$\frac{π}{3}$=$\sqrt{3}$(x-2)B.y-$\frac{2π}{3}$=$\sqrt{3}$(x-4)C.y-$\frac{2π}{3}$=2(x-4)D.y-$\frac{2π}{3}$=2(x-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在长方形ABCD中,AE=EB,三角形BEF的面积占长方形ABCD面积的$\frac{3}{16}$,那么BF:FC=3:1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数y=(a2-3a+3)ax是指数函数,则函数y=bx+2-a必过定点(  )
A.(0,1)B.(-2,-1)C.(0,-2)D.(-2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于任意的n∈N*,若数列{an}同时满足下列两个条件,则称数列{an}具有“性质m”:
①$\frac{{{a_n}+{a_{n+2}}}}{2}<{a_{n+1}}$;          
②存在实数M,使得an≤M成立.
(1)数列{an}、{bn}中,an=n(n∈N*)、${b_n}=1-\frac{1}{n^2}$(n∈N*),判断{an}、{bn}是否具有“性质m”;
(2)若各项为正数的等比数列{cn}的前n项和为Sn,且${c_3}=\frac{1}{4}$,${S_3}=\frac{7}{4}$,证明:数列{Sn}具有“性质m”,并指出M的取值范围;
(3)若数列{dn}的通项公式${d_n}=\frac{{t\;(3•{2^n}-n)+1}}{2^n}$(n∈N*).对于任意的n≥3(n∈N*),数列{dn}具有“性质m”,且对满足条件的M的最小值M0=9,求整数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C所对的边分别是a,b,c,若$20a•\overrightarrow{BC}+15b•\overrightarrow{CA}+12c•\overrightarrow{AB}=\vec 0$,则△ABC的最小角等于$arccos\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=ax3-3x2+1,若f(x)=0存在唯一正实数根x0,则a取值范围是(-∞,-2).

查看答案和解析>>

同步练习册答案