精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,直线L:y=mx+3-4m,m∈R恒过一定点,且与以原点为圆心的圆C恒有公共点.
(1)求出直线L恒过的定点坐标;
(2)当圆C的面积最小时,求圆C的方程;
(3)已知定点Q(-4,3),直线L与(2)中的圆C交于M、N两点,试问
QM
QN
•tan∠MQN
是否存在最大值,若存在则求出该最大值,并求出此时直线L的方程,若不存在请说明理由.
分析:(1)直线L:y=mx+3-4m可化简为y=m(x-4)+3,由此知直线恒过定点T(4,3).
(2)由题意,要使圆C的面积最小,定点T(4,3)在圆上,由此能求出圆C的方程.
(3)
QM
QN
•tan∠MQN
=|
QM
||
QN
|•cos∠MQN•tan∠MQN
=|
QM
|•|
QN
|•sin∠MQN
=2S△MQN.由此能够导出
QM
QN
×tan∠MQN
的最大值和此时直线L的方程.
解答:解:(1)直线L:y=mx+3-4m可化简为y=m(x-4)+3(2分)
所以直线恒过定点T(4,3)(4分)
(2)由题意,要使圆C的面积最小,定点T(4,3)在圆上,
所以圆C的方程为x2+y2=25.(8分)
(3)
QM
QN
•tan∠MQN

=|
QM
||
QN
|•cos∠MQN•tan∠MQN

=|
QM
|•|
QN
|•sin∠MQN
=2S△MQN(10分)
由题意得直线L与圆C的一个交点为M(4,3),又知定点Q(-4,3),
直线LMQ:y=3,|MQ|=8,则当N(0,-5)时SMQN有最大值32.
QM
QN
×tan∠MQN
有最大值为64,(13分)
此时直线L的方程为2x-y-5=0.(14分)
点评:本题考查直线和圆的位置关系,解题时要认真审题,仔细解答,注意合理地选用公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案