【题目】在平面直角坐标系xOy中,圆C1:(x﹣1)2+y2=2,圆C2:(x﹣m)2+(y+m)2=m2 . 圆C2上存在点P满足:过点P向圆C1作两条切线PA,PB,切点为A,B,△ABP的面积为1,则正数m的取值范围是 .
科目:高中数学 来源: 题型:
【题目】已知各项均不为0的数列{an}满足a1=a,a2=b,且an2=an﹣1an+1+λ(n≥2,n∈N),其中λ∈R.
(1)若λ=0,求证:数列{an}是等比数列;
(2)求证:数列{an}是等差数列的充要条件是λ=(b﹣a)2;
(3)若数列{bn}为各项均为正数的等比数列,且对任意的n∈N* , 满足bn﹣an=1,求证:数列{(﹣1)nanbn}的前2n项和为常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三角形ABC的三边长为a、b、c,且其中任意两边长均不相等.若,,成等差数列.(1)比较与的大小,并证明你的结论;(2)求证B不可能是钝角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Q2=称为x,y的二维平方平均数,A2=称为x,y的二维算术平均数,G2=称为x,y的二维几何平均数,H2=称为x,y的二维调和平均数,其中x,y均为正数.
(1)试判断G2与H2的大小,并证明你的猜想.
(2)令M=A2﹣G2,N=G2﹣H2,试判断M与N的大小,并证明你的猜想.
(3)令M=A2﹣G2,N=G2﹣H2,P=Q2﹣A2,试判断M、N、P三者之间的大小关系,并证明你的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知斜率为k的直线l经过点(-1,0),且与抛物线C:y2=2px(p>0,p为常数)交于不同的两点M,N.当k=时,弦MN的长为.
(1)求抛物线C的标准方程.
(2)过点M的直线交抛物线于另一点Q,且直线MQ经过点B(1,-1),判断直线NQ是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}均为各项都不相等的数列,Sn为{an}的前n项和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn= ,求a4的值;
(2)若{an}是公比为q的等比数列,求证:存在实数λ,使得{bn+λ}为等比数列;
(3)若{an}的各项都不为零,{bn}是公差为d的等差数列,求证:a2 , a3 , …,an…成等差数列的充要条件是d= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?
(1)被4整除;
(2)比21 034大的偶数;
(3)左起第二、四位是奇数的偶数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C 与y 轴交于A,B 两点,且|AB|=2.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x 轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com