精英家教网 > 高中数学 > 题目详情
若实数列{an}满足ak-1+ak+1≥2ak(k=2,3,…),则称数列{an}为凸数列.
(Ⅰ)判断数列an=(
3
2
)n(n∈N+)
是否是凸数列?
(Ⅱ)若数列{an}为凸数列,k、n、m∈N+,且k<n<m,
(i)求证:
am-an
m-n
an-ak
n-k

(ii)设Sn是数列{an}的前n项和,求证:
m-n
k
Sk+
n-k
m
Sm
m-k
n
Sn
查看本题解析需要登录
查看解析如何获取优点?普通用户:2个优点。
如何申请VIP用户?VIP用户:请直接登录即可查看。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(I)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?
若是,指出它对应的实常数p&,q,若不是,请说明理由;
(II)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.
(1)求数列{an}前2009项的和;
(2)是否存在实数t,使得数列{an}是“M类数列”,如果存在,求出t;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数列{an}满足ak-1+ak+1≥2ak(k=2,3,…),则称数列{an}为凸数列.
(Ⅰ)判断数列an=(
3
2
)n(n∈N+)
是否是凸数列?
(Ⅱ)若数列{an}为凸数列,k、n、m∈N+,且k<n<m,
(i)求证:
am-an
m-n
an-ak
n-k

(ii)设Sn是数列{an}的前n项和,求证:
m-n
k
Sk+
n-k
m
Sm
m-k
n
Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市高三(上)12月调研数学试卷8(理科)(解析版) 题型:解答题

若实数列{an}满足ak-1+ak+1≥2ak(k=2,3,…),则称数列{an}为凸数列.
(Ⅰ)判断数列是否是凸数列?
(Ⅱ)若数列{an}为凸数列,k、n、m∈N+,且k<n<m,
(i)求证:
(ii)设Sn是数列{an}的前n项和,求证:

查看答案和解析>>

科目:高中数学 来源:2011年重庆一中高考数学二模试卷(理科)(解析版) 题型:解答题

若实数列{an}满足ak-1+ak+1≥2ak(k=2,3,…),则称数列{an}为凸数列.
(Ⅰ)判断数列是否是凸数列?
(Ⅱ)若数列{an}为凸数列,k、n、m∈N+,且k<n<m,
(i)求证:
(ii)设Sn是数列{an}的前n项和,求证:

查看答案和解析>>

同步练习册答案