精英家教网 > 高中数学 > 题目详情
17.画出函数y=|x2-1|的图象.

分析 先作出函数y=x2-1的图象,再将y轴下方的图象翻转到上方即可.

解答 解:先作出函数y=x2-1的图象,
再将y轴下方的图象翻转到上方即可,
函数y=|x2-1|的图象如下,

点评 本题考查了函数的图象的变换应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,P为AB的中点,O在边AC上,且|$\overrightarrow{AO}$|=2|$\overrightarrow{OC}$|,BO∩CP=R,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$.
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AR}$;
(2)若H在BC上,且RH⊥BC,设|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,θ=<$\overrightarrow{a}$,$\overrightarrow{b}$>,若θ=[$\frac{π}{3}$,$\frac{2π}{3}$],求$\frac{|\overrightarrow{CH}|}{|\overrightarrow{CB}|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲乙两人相约打靶,甲射击3次,每次射击的命中率为$\frac{1}{2}$,乙射击2次,每次射击的命中率为$\frac{2}{3}$,记甲命中的次数为x,乙命中的次数为y
(1)求x+y的分布列和E(x+y)
(2)猜想两个相互独立的变量x,y的期望与x+y的期望间的关系,并证明你的猜想.
其中,x的分布列为:
xx1x2xn
pp1p2pn
y的分布列为:
yy1y2ym
pp${\;}_{1}^{′}$p${\;}_{2}^{′}$p${\;}_{m}^{′}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P(A|B)等于(  )
A.$\frac{2}{5}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数f(x)=2x3+4x2-40x,x∈[-3,3]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[$\frac{π}{2}$,π].
(1)若|$\overrightarrow{a}$+$\overrightarrow{b}$|>$\sqrt{3}$,求x的取值范围;
(2)函数f(x)=$\overrightarrow{a}$,$\overrightarrow{b}$+|$\overrightarrow{a}$+$\overrightarrow{b}$|,若对任意x1,x2∈[$\frac{π}{2}$,π],恒有|f(x1)-f(x2)|<t,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m$=(2cosωx,1),$\overrightarrow n$=($\sqrt{3}sinωx$-cosωx,a),其中(x∈R,ω>0),函数f(x)=$\overrightarrow m•\overrightarrow n$的最小正周期为π.
(1)求ω;
(2)求函数f(x)的单调递增区间;
(3)如果f(x)在区间[-$\frac{π}{6}$,$\frac{5π}{12}$]上的最小值为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1\\;x≤0}\\{{x}^{\frac{1}{2}}\\;x>0}\end{array}\right.$,若函数f(x)的图象均在直线y=1上半部分(不包括y=1本身),求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=$\frac{a}{3}$x3-ax2+x+1,a∈R.
(1)讨论f(x)的单调性;
(1)若f(x)存在两个极值点x1,x2,且1<$\frac{{x}_{1}}{{x}_{2}}$≤5,求a的取值范围.

查看答案和解析>>

同步练习册答案