精英家教网 > 高中数学 > 题目详情
在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,
(1)证明:;
(2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.
(1)详见解析;(2),证明用数学归纳法,过程详见解析.

试题分析:(1)由已知可得yn是xn的一个二次函数,利用配方法,注意到就可证明;(2)由已知有该年的增长量,所以第n+1年年初的的数量xn+1=xn+yn,代入即可用 xn表示xn+1;证明草原上的野兔总数量恒小于m,即证对一切非零自然数n,都有xn<m,可考虑用数学归纳法来证明:当n=1时显然成立;再假设当时,命题成立,则对n=k+1时,由于是xk的一个二次函数,结合二次函数的性质,可证成立,从而有对一切正整数n,,即是草原上的野兔总数量恒小于m.
试题解析:(1)由题意知 ,配方得: ∵∴当且仅当时,取得最大值,即                                  (5分)
(2)                                                    (8分)
用数列归纳法证明:
当n=1时,由题意知,故命题成立
假设当时,命题成立
是xk的一个二次函数有对称轴,开口向下,由,则,于是在上均有=m
,即知,∴当时,命题成立,综上知,对一切正整数n,这就是说该草原上的野兔数量不可能无限增长                                  (13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,函数.
⑴若不等式对任意恒成立,求实数的最值范围;
⑵若,且函数的定义域和值域均为,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为实常数).
(1)若,求函数的单调区间;
(2)设在区间上的最小值为,求的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范围,并在该范围内求函数y=()的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
2x-x2(0<x≤3)
x2+6x(-2<x≤0)
-
4x
x+1
(-∞<x≤-2)

(1)作出f(x)的图象;
(2)求f(x)的值域;
(3)求f(x)<0时的x取值集合;
(4)讨论方程f(x)=b解的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=
2x,x∈(-∞,2)
log2x,x∈(2,+∞)
,则满足f(x)=4的x的值是(  )
A.2B.16C.2或16D.-2或16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x,y∈R,且满足
(x-2)3+2(x-2)+sin(x-2)=-3
(y-2)3+2(y-2)+sin(y-2)=3
,则x+y=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线轴的两个交点的横坐标分别为1和3,则不等式的解集是                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上变化时,y恒取正值,求x的取值范围.

查看答案和解析>>

同步练习册答案