精英家教网 > 高中数学 > 题目详情

已知函数,其中常数
(1)令,求函数的单调区间;
(2)令,将函数的图像向左平移个单位,再往上平移个单位,得到函数的图像.对任意的,求在区间上零点个数的所有可能值.

(1)增区间 ,减区间;
(2) 当时,21个,否则20个.

解析试题分析:(1)令,函数化为,可得单调区间;(2)时,经平移可得,根据的图像与性质可得零点个数.
解:(1)
分别令:
的单调区间;
(2)时,,,
其最小正周期 ,
,得,
,即 ,
区间的长度为10个周期,
若零点不在区间的端点,则每个周期有2个零点;
若零点在区间的端点,则仅在区间左或右端点处得一个区间含3个零点,其它区间仍是2个零点;
故当时,21个,否则20个.
考点:的图像与性质.三角恒等变形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数),其图象的两个相邻对称中心的距离为.
(1)求函数的解析式;
(2)若△的内角为所对的边分别为(其中),且
 ,面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图象如图所示.

(1)求的表达式;
(2)设,求函数的最小值及相应的的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(A>0,ω>0)的一系列对应值如下表:

x
 

 

 

 

 

 

 

 
y
 
-1
 
1
 
3
 
1
 
-1
 
1
 
3
 
 
(1)根据表格提供的数据求函数f(x)的一个解析式;
(2)根据(1)的结果,若函数(k>0)周期为,当x∈[0,]时,方程恰有两个不同的解,求实数m的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,求函数的最小正周期;
时,求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角的终边落在直线上,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(l)求函数的最小正周期;
(2)当时,求函数f(x)的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知任意角的终边经过点,且
(1)求的值.(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=(cosωx,sinωx),b=(cosωx,cosωx),其中0<ω<2,函数,其图象的一条对称轴为
(1)求函数的表达式及单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,S△ABC为其面积,若,b=1,,求a的值。

查看答案和解析>>

同步练习册答案