精英家教网 > 高中数学 > 题目详情

【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ].
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的最大值及单调递增区间.

【答案】
(1)解:依题意知3sin2x+sin2x=cos2x+sin2x=1

∴sin2x=

∵x∈[0, ].

∴sinx=

x=


(2)解:f(x)= = sinxcosx+sin2x= sin2x﹣ cos2x+ =sin(2x﹣ )+

f(x)max=1+ =

由2kπ﹣ ≤2x﹣ ≤2kπ+ ,k∈Z,得kπ﹣ ≤x≤kπ+

∴函数的单调增区间为[kπ﹣ ,kπ+ ](k∈Z)


【解析】(1)先根据题意分别表示出两向量的模,取得sinx的值,进而求得x.(2)表示出函数f(x)的表达式,进而利用二倍角公式和两角和公式化简,进而根据三角函数的图象和性质求得函数的最大值和单调增区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:x1 , x2是方程x2﹣mx﹣1=0的两个实根,且不等式a2+4a﹣3≤|x1﹣x2|对任意m∈R恒成立;命题q:不等式x2+2x+a<0有解,若命题p∨q为真,p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015男篮亚锦赛决赛阶段,中国男篮以连胜的不败成绩赢得第届亚锦赛冠军,同时拿到亚洲唯一张直通里约奥运会的入场券.赛后,中国男篮主力易建联荣膺本届亚锦赛(最有价值球员),下表是易建联在这场比赛中投篮的统计数据.

比分

易建联技术统计

投篮命中

罚球命中

全场得分

真实得分率

中国新加坡

中国韩国

中国约旦

中国哈萨克斯坦

中国黎巴嫩

中国卡塔尔

中国印度

中国伊朗

中国菲律宾

注:(1)表中表示出手次命中次;

(2)(真实得分率)是衡量球员进攻的效率,其计算公式为:

(1)从上述场比赛中随机选择一场,求易建联在该场比赛中超过的概率;

(2)我们把比分分差不超过分的比赛称为“胶着比赛”.为了考验求易建联在“胶着比赛”中的发挥情况,从“胶着比赛”中随机选择两场,求易建联在这两场比赛中至少有一场超过的概率;

(3)用来表示易建联某场的得分,用来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断之间是否具有线性相关关系?结合实际简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象上所有的点向右平行移动 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是(
A.y=sin(2x﹣
B.y=sin(2x+
C.y=sin( x﹣
D.y=sin( x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2,﹣3), =(﹣5,4), =(1﹣λ,3λ+2).
(1)若△ABC为直角三角形,且∠B为直角,求实数λ的值;
(2)若点A、B、C能构成三角形,求实数λ应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

  (1)若函数是单调函数,求的取值范围;

2)求证:当时,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= + ,则下列命题中正确命题的序号是
①f(x)是偶函数;
②f(x)的值域是[ ,2];
③当x∈[0, ]时,f(x)单调递增;
④当且仅当x=2kπ± (k∈Z)时,f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(Ⅰ) 求证:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由;
(Ⅲ) 求点D到平面PAM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线经过点,倾斜角为.在以原点为极点, 轴正半轴为极轴的极坐标系中,曲线的方程为.

(1)写出直线的参数方程和曲线的直角坐标方程;

(2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

同步练习册答案