【题目】如图,菱形与正三角形的边长均为2,它们所在平面互相垂直,平面,平面.
(1)求证:平面平面;
(2)若,求二面角的大小.
科目:高中数学 来源: 题型:
【题目】中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某科研机构研究发现,某品种中医药的药物成分甲的含量(单位:克)与药物功效(单位:药物单位)之间具有关系.检测这种药品一个批次的5个样本,得到成分甲的平均值为4克,标准差为克,则估计这批中医药的药物功效的平均值为( )
A.22药物单位B.20药物单位C.12药物单位D.10药物单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,函数,,其中为常数,且,令函数为函数和的积函数.
(1)求函数的表达式,并求其定义域;
(2)当时,求函数的值域
(3)是否存在自然数,使得函数的值域恰好为?若存在,试写出所有满足条件的自然数所构成的集合;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】田忌赛马是《史记》中记载的一个故事,说的是齐国大将军田忌经常与齐国众公子赛马,孙膑发现田忌的马和其他人的马相差并不远,都分为上、中、下三等.于是孙膑给田忌将军献策:比赛即将开始时,他让田忌用下等马对战公子们的上等马,用上等马对战公子们的中等马,用中等马对战公子们的下等马,从而使田忌赢得了许多赌注.假设田忌的各等级马与某公子的各等级马进行一场比赛,田忌获胜的概率如下表所示:
比赛规则规定:一次比赛由三场赛马组成,每场由公子和田忌各出一匹马参赛,结果只有胜和负两种,并且毎一方三场赛马的马的等级各不相同,三场比赛中至少获胜两场的一方为最终胜利者.
(1)如果按孙膑的策略比赛一次,求田忌获胜的概率;
(2)如果比赛约定,只能同等级马对战,每次比赛赌注1000金,即胜利者赢得对方1000金,每月比赛一次,求田忌一年赛马获利的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:
项目 | 金额[元/(人年)] | 性质与计算方法 |
基础工资 | 2007年基础工资为20000元 | 考虑到物价因素,决定从2008年 起每年递增10%(与工龄无关) |
房屋补贴 | 800 | 按职工到公司年限计算,每年递增800元 |
医疗费 | 3200 | 固定不变 |
如果该公司今年有5位职工,计划从明年起每年新招5名职工.
(1)若今年算第一年,将第n年该公司付给职工工资总额y(万元)表示成年限n的函数;
(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形,,,将沿对角线进行翻折,得到三棱锥,则在翻折的过程中,有下列结论正确的有_____.
①三棱锥的体积的最大值为;
②三棱锥的外接球体积不变;
③三棱锥的体积最大值时,二面角的大小是60°;
④异面直线与所成角的最大值为90°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com