分析 (1)命题p的否定:存在x0∈R,|x0|+x0<0.容易判断真假.
(2)命题p:?x∈R,|x|+x≥0是真命题;命题“p∧q”为假命题,可得q为假命题.因此关于x的方程x2+mx+1=0没有实数根.因此△<0,解得m范围.
解答 解:(1)命题p的否定:存在x0∈R,|x0|+x0<0.是一个假命题.
(2)命题p:?x∈R,|x|+x≥0是真命题;命题“p∧q”为假命题,∴q为假命题.
因此关于x的方程x2+mx+1=0没有实数根.∴△=m2-4<0,解得-2<m<2.
∴实数m的取值范围是(-2,2).
点评 本题考查了绝对值不等式的解法、充要条件的判定、一元二次方程的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 5、3、0.8 | B. | 10、6、0.8 | C. | 5、3、0.6 | D. | 10、6、0.6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1)(2)(4) | B. | (1)(3)(4) | C. | (2)(3)(4) | D. | (2)(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com