精英家教网 > 高中数学 > 题目详情
1.(1)求与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有相同焦点,且经过点(3$\sqrt{2}$,2)的双曲线的标准方程.
(2)已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,求该双曲线的方程.

分析 (1)设所求双曲线方程为:$\frac{{x}^{2}}{16-λ}$-$\frac{{y}^{2}}{4+λ}$=1,(-4<λ<16),利用待定系数法能求出双曲线方程.
(2)双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线方程为$y=±\frac{b}{a}x$,圆心C(3,0),半径r=2,由此利用点到直线距离公式能求出双曲线方程.

解答 解:(1)∵双曲线与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有相同焦点,
∴设所求双曲线方程为:$\frac{{x}^{2}}{16-λ}$-$\frac{{y}^{2}}{4+λ}$=1,(-4<λ<16),
∵双曲线过点($3\sqrt{2}$,2),∴$\frac{18}{16-λ}$+$\frac{4}{4+λ}$=1,
∴λ=4或λ=-14.(舍)
∴所求双曲线方程为$\frac{{x}^{2}}{12}-\frac{{y}^{2}}{8}=1$.
(2)双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线方程为$y=±\frac{b}{a}x$,
即一条渐近线方程为bx-ay=0,
∵圆C:x2+y2-6x+5=0可转化为(x-3)2+y2=4,
∴圆心C(3,0),半径r=2,∴c2=9,
∴$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=9}\\{\frac{|3b|}{\sqrt{{a}^{2}+{b}^{2}}}}\end{array}\right.$=2,解得a2=5,b2=4,
∴双曲线方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{4}=1$.

点评 本题考查双曲线方程的求法,是中档题,解题时要认真审题,注意待定系数法和点到直线距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图所示,已知多面体ABCD-A1B1C1D1是棱长为1的正方体.
(1)求证:平面AB1D1∥平面BDC1
(2)求四棱锥D1-AB1C1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数$f(x)={sin^2}x+\sqrt{3}sinxcosx$.
(1)求函数f(x)的最小正周期;
(2)在△ABC中,a,b,c分别为内角A,B,C的对边,且$f(A)=\frac{3}{2},a=2$,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列几个命题:
①命题“若α=$\frac{π}{4}$,则tanα=1”的逆否命题为假命题;
②命题p:任意x∈R,都有sinx≤1,则“非p”:存在x0∈R,使得sinx0>1
③命题p:存在x0∈R,使得sinx0+cosx0=$\frac{3}{2}$;命题q:△ABC中,A>B?sinA>sinB,则命题“¬p且q”为真命题
④方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆的充要条件是-3<m<5.
⑤对空间任意一点O和不共线的三点A、B、C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+$\overrightarrow{OC}$,则P、A、B、C四点共面.
其中不正确的个数(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知两直线l1:x-2y+4=0和l2:x+y-2=0的交点为P.
(1)直线l过点P且与直线5x+3y-6=0垂直,求直线l的方程;
(2)圆C过点(3,1)且与l1相切于点P,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n项和为Sn,a2=3,S5=25,正项数列{bn}满足${b_1}{b_2}{b_3}…{b_n}={({\sqrt{3}})^{s_n}}$.
(1)求数列{an},{bn}的通项公式;
(2)若(-1)nλ<2+$\frac{{{{({-1})}^{n+1}}}}{a_n}$对一切正整数n均成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(ax2+bx+c)e-x的图象过点(0,2a)且在该点处切线的倾斜角为$\frac{π}{4}$.
(1)试用a表示b,c;
(2)若f(x)在[$\frac{1}{2}$,+∞)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C上任意一点M满足|MF1|+|MF2|=4,其中F1($0,-\sqrt{3})$,F2($0,\sqrt{3})$,
(Ⅰ)求曲线C的方程;
(Ⅱ)已知直线$l:y=kx+\sqrt{3}$与曲线C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知幂函数$f(x)={x^{-2{m^2}+m+3}}$(m∈Z)为偶函数,且在(0,+∞)上是增函数.
(1)求f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在区间(2,3)上为增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案