分析 令F(x)=f(x)-$\frac{1}{2}$x2=-x3-$\frac{1}{2}$x2(x>0),得到F(x)在(0,+∞)递减,根据函数的单调性求出m的范围即可.
解答 解:由于f(m)-$\frac{1}{2}$m2≤f(1-m)-$\frac{1}{2}$(1-m)2,
令F(x)=f(x)-$\frac{1}{2}$x2=-x3-$\frac{1}{2}$x2(x>0),
则F(x)在(0,+∞)递减,
不等式F(m)≤F(1-m).
故$\left\{\begin{array}{l}{m≥1-m}\\{m>0}\\{1-m>0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{m≥\frac{1}{2}}\\{m>0}\\{m<1}\end{array}\right.$,
即$\frac{1}{2}$≤m<1,
故答案为:[$\frac{1}{2}$,1).
点评 本题考查了函数的单调性问题,考查不等式的解法,是一道基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-1] | B. | (-∞,2] | C. | (-∞,3] | D. | [-1,3] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com