精英家教网 > 高中数学 > 题目详情

【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和80后的员工中随机调查了100位,得到数据如下表:

愿意被外派

不愿意被外派

合计

70后

20

20

40

80后

40

20

60

合计

60

40

100

(Ⅰ)根据调查的数据,是否有90%以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(参考公式: ,其中

【答案】(Ⅰ)见解析;(Ⅱ)

【解析】试题分析:(1)本问考查独立性检验,根据列联表中的数据,计算,并将所得结果与所给表格中的临界值进行对照,从而判断有多大把握认为是否愿意被外派与年龄有关;(2)本问考查古典概型概率公式问题,关键是确定基本事件空间总数及事件A所包含的基本事件个数,基本事件空间可以采用列表法、树状图法,列举法等表示,本问中愿意被外派人数不少于不愿意被外派人数愿意被外派人数为人或,确定其包含的基本事件个数,就可以求出从其概率.

试题解析:(Ⅰ)

所以有90% 以上的把握认为“是否愿意被外派与年龄有关”.

(Ⅱ)设后员工中报名参加活动有愿意被外派的人为,不愿意被外派的人为,现从中选人,如图表所示,用表示没有被选到,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(可以以不同形式列举出15种情况)

则“愿意被外派人数不少于不愿意被外派人数”即“愿意被外派人数为人或人”

种情况,则其概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 万作为技改费用,投入(50+2x)万元作为宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a4=7,a10=19,其前n项和为Sn
(1)求数列{an}的通项公式an及Sn
(2)若等比数列{bn}的前n项和为Tn , 且b1=2,b4=S4 , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内给定三个向量 =(3,2), =(﹣1,2), =(4,1).回答下列问题:
(1)若( +k )∥(2 ),求实数k;
(2)设 =(x,y)满足( )∥( + )且| |=1,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族人数

占本组的频率

第一组

[25,30)

120

0.6

第二组

[30,35)

195

p

第三组

[35,40)

100

0.5

第四组

[40,45)

a

0.4

第五组

[45,50)

30

0.3

第六组

[50,55)

15

0.3


(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的定义域为 , 值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等边三角形的边长为4,四边形为正方形,平面平面 分别是线段 上的点.

(Ⅰ)如图①,若为线段的中点, ,证明: 平面

(Ⅱ)如图②,若 分别为线段 的中点, ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=x+b与圆x2+y2﹣2x+4y﹣4=0相交于A,B两点,O为坐标原点,若 =0,则实数b的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式exf(x)>4+2ex(其中e为自然对数的底数)的解集为(
A.(1,+∞)
B.(﹣∞,0)∪(1,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣∞,1)

查看答案和解析>>

同步练习册答案