【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和80后的员工中随机调查了100位,得到数据如下表:
愿意被外派 | 不愿意被外派 | 合计 | |
70后 | 20 | 20 | 40 |
80后 | 40 | 20 | 60 |
合计 | 60 | 40 | 100 |
(Ⅰ)根据调查的数据,是否有90%以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(参考公式: ,其中)
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】试题分析:(1)本问考查独立性检验,根据列联表中的数据,计算,并将所得结果与所给表格中的临界值进行对照,从而判断有多大把握认为“是否愿意被外派与年龄有关”;(2)本问考查古典概型概率公式问题,关键是确定基本事件空间总数及事件A所包含的基本事件个数,基本事件空间可以采用列表法、树状图法,列举法等表示,本问中“愿意被外派人数不少于不愿意被外派人数”即“愿意被外派人数为人或人”,确定其包含的基本事件个数,就可以求出从其概率.
试题解析:(Ⅰ)
所以有90% 以上的把握认为“是否愿意被外派与年龄有关”.
(Ⅱ)设后员工中报名参加活动有愿意被外派的人为,不愿意被外派的人为,现从中选人,如图表所示,用表示没有被选到,
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
10 | ||||||
11 | ||||||
12 | ||||||
13 | ||||||
14 | ||||||
15 |
(可以以不同形式列举出15种情况)
则“愿意被外派人数不少于不愿意被外派人数”即“愿意被外派人数为人或人”
共种情况,则其概率.
科目:高中数学 来源: 题型:
【题目】北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 万作为技改费用,投入(50+2x)万元作为宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足:a4=7,a10=19,其前n项和为Sn .
(1)求数列{an}的通项公式an及Sn;
(2)若等比数列{bn}的前n项和为Tn , 且b1=2,b4=S4 , 求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内给定三个向量 =(3,2), =(﹣1,2), =(4,1).回答下列问题:
(1)若( +k )∥(2 ﹣ ),求实数k;
(2)设 =(x,y)满足( ﹣ )∥( + )且| ﹣ |=1,求 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | p |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | a | 0.4 |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55) | 15 | 0.3 |
(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等边三角形的边长为4,四边形为正方形,平面平面, , , , 分别是线段, , , 上的点.
(Ⅰ)如图①,若为线段的中点, ,证明: 平面;
(Ⅱ)如图②,若, 分别为线段, 的中点, , ,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式exf(x)>4+2ex(其中e为自然对数的底数)的解集为( )
A.(1,+∞)
B.(﹣∞,0)∪(1,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣∞,1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com