精英家教网 > 高中数学 > 题目详情
15.化简:
(1)$\frac{cos(α-π)}{sin(π-α)}$•sin(α-$\frac{π}{2}$)cos($\frac{π}{2}$+α);
(2)$\frac{cos(2π-α)sin(π+α)}{sin(\frac{π}{2}+α)tan(3π-α)}$.

分析 (1)由已知条件利用三角函数诱导公式进行化简求值.
(2)由已知条件利用三角函数诱导公式和同角三角函数关系式进行化简求值.

解答 解:(1)$\frac{cos(α-π)}{sin(π-α)}$•sin(α-$\frac{π}{2}$)cos($\frac{π}{2}$+α)
=$\frac{cosα}{sinα}•(-cosα)(-sinα)$
=cos2α.
(2)$\frac{cos(2π-α)sin(π+α)}{sin(\frac{π}{2}+α)tan(3π-α)}$
=$\frac{cosα(-sinα)}{cosα(-tanα)}$
=$\frac{sinα}{\frac{sinα}{cosα}}$
=cosα.

点评 本题考查三角函数的化简求值,是基础题,解题时要认真审题,注意三角函数诱导公式和同角三角函数关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-ax2+1在x=2处取得极值,求:
(1)实数a的值;
(2)f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x∈[0,2π),则函数f(x)=$\sqrt{sinx}$$+\sqrt{tanx}$的定义域是[0,$\frac{π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an},并且an=$\left\{\begin{array}{l}{{n}^{2}-5xn+8,n≤5且n{∈N}^{*}}\\{(x-23{)log}_{2}(n-4),n>5且n{∈N}^{*}}\end{array}\right.$,若{an}是递减数列,则实数x的取值范围是[2,23).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.m∈R,“函数y=2x+m-1没有零点”是“对任意的x>1,logmx>0恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式x2≤4的解集是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|$\frac{2x-1}{{x}^{2}+3x+2}$>0},B={x|x2+ax+b≤0},A∩B=($\frac{1}{2}$,3],试求a,b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在正方体中ABCD-A1B1C1D1中,直线AD1与平面B1CD1所成的角的正弦值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是(  )
A.2B.3C.4D.7

查看答案和解析>>

同步练习册答案