精英家教网 > 高中数学 > 题目详情
在锐角三角形中,三个内角A、B、C的对边分别为a、b、c,满足条件sin22B+sin2BsinB+cos2B=1.
(Ⅰ)求∠B的值;
(Ⅱ)若b=3,求a+c的最大值.
分析:(1)利用二倍角公式对sin22B+sin2BsinB+cos2B=1进行化简,最后求得cosB,进而求得B.
(Ⅱ)由余弦定理可得 b2=9=(a+c)2-3ac≥(a+c)2-
3
4
(a+c)2=(
a+c
2
)
2
,由此求得a+c的最大值.
解答:解:(1)∵sin22B+sin2BsinB+cos2B=1,∴4sin2Bcos2B+2sin2BcosB-2sin2B=0,
即2sin2B(2cosB-1)(cosB+1)=0.
又△ABC为锐角三角形,∴2cosB-1=0,即∠B=
π
3

(Ⅱ)若b=3,由上可得∠B=
π
3
,由余弦定理可得 cosB=
a2+2-2
2ac
=
1
2

∴b2=9=a2+c2-2ac×
1
2
=(a+c)2-3ac≥(a+c)2-
3
4
 (a+c)2=(
a+c
2
)
2

∴a+c≤6,即a+c的最大值为6.
点评:本题主要考查了余弦定理、二倍角公式的应用.在求最值的问题上,对于二次函数,常用配方法来求,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,三个内角A,B,C所对的边分别为a,b,c,若acsinC=(a2+c2-b2)sinB,
(1)若∠C=
π
4
,求∠A的大小.
(2)若三角形为非等腰三角形,求
c
b
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角三角形中,三个内角A、B、C的对边分别为a、b、c,满足条件sin22B+sin2BsinB+cos2B=1.
(Ⅰ)求∠B的值;
(Ⅱ)若b=3,求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角△ABC中,三个内角A,B,C所对的边分别为a,b,c,若acsinC=(a2+c2-b2)sinB,
(1)若数学公式,求∠A的大小.
(2)若三角形为非等腰三角形,求数学公式的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省杭州市重点高中高考命题比赛数学参赛试卷13(理科)(解析版) 题型:解答题

在锐角△ABC中,三个内角A,B,C所对的边分别为a,b,c,若acsinC=(a2+c2-b2)sinB,
(1)若,求∠A的大小.
(2)若三角形为非等腰三角形,求的取值范围.

查看答案和解析>>

同步练习册答案