精英家教网 > 高中数学 > 题目详情

【题目】根据下面一组等式: S1=1
S2=2+3=5
S3=4+5+6=15
S4=7+8+9+10=34
S5=11+12+13+14+15=65
S6=16+17+18+19+20+21=111
S7=22+23+24+25+26+27+28=175

可得S1+S3+S5+…+S2n1=

【答案】n4
【解析】解:由题中数阵的排列特征,设第i行的第1个数记为ai(i=1,2,3…n) 则a2﹣a1=1
a3﹣a2=2
a4﹣a3=3

an﹣an1=n﹣1
以上n﹣1个式子相加可得,an﹣a1=1+2+…+(n﹣1)= ×(n﹣1)=
∴an= +1
Sn共有n连续正整数相加,并且最小加数为 +1,最大加数
∴Sn=n× + ×(﹣1)= (n3+n)
∴S2n1= [(2n﹣1)3+(2n﹣1)]=4n3﹣6n2+4n﹣1
∴S1=1
S1+S3=16=24
S1+S3+S5=81=34
∴S1+S3+…+S2n1=1+15+65+…+4n3﹣6n2+4n﹣1
=n4
故答案:n4
【考点精析】解答此题的关键在于理解归纳推理的相关知识,掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知点D,E分别在边AB,BC上,且AB=3AD,BC=2BE.
(Ⅰ)用向量 表示
(Ⅱ)设AB=6,AC=4,A=60°,求线段DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosxsin(x+ )+m(m∈R),当x∈[0, ]时,f(x)的最小值为﹣1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数 x∈[1,10],执行如图所示的程序框图,则输出的x不大于63的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2+ax,g(x)=ex , a∈R且a≠0,e=2.718…,e为自然对数的底数.
(Ⅰ)求函数h(x)=f(x)g(x)在[﹣1,1]上极值点的个数;
(Ⅱ)令函数p(x)=f'(x)g(x),若a∈[1,3],函数p(x)在区间[b+a﹣ea , +∞]上均为增函数,求证:b≥e3﹣7.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是公比为q(q>1)的等比数列,其前n项和为Sn . 已知S3=7,且3a2是a1+3与a3+4的等差数列. (Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn= ,cn=bn(bn+1﹣bn+2),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题。
(1)已知椭圆C: =1(a>b>0)的离心率为 ,以原点为圆心,椭圆的短半轴长为半径的圆与直线 x﹣ y+12=0相切.求椭圆C的方程;
(2)已知⊙A1:(x+2)2+y2=12和点A2(2,0),求过点A2且与⊙A1相切的动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,则输出的k值为(
A.﹣1
B.4
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|ax﹣1|. (Ⅰ)若f(x)≤2的解集为[﹣6,2],求实数a的值;
(Ⅱ)当a=2时,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案