精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知圆,圆 ,且).

(1)设为坐标轴上的点,满足:过点P分别作圆与圆的一条切线,切点分别为,使得,试求出所有满足条件的点的坐标;

(2)若斜率为正数的直线平分圆,求证:直线与圆总相交.

【答案】(1)(2)见解析

【解析】

分析:(1)设点的坐标为,根据切线长定理可得,又为坐标轴上的点,由此可得所求.(2)由题意可设直线的方程为,即.问题等价于圆心到直线的距离小于半径,即 分析可得可得从而得结论成立

详解:(1)设点的坐标为,圆与圆的半径分别为

由题意得

化简得

因为为坐标轴上的点,

所以点的坐标为.

(2)依题意知直线过圆的圆心,可设直线的方程为,即

则圆心到直线的距离为

又圆的半径为

“直线与圆总相交”等价于 ”,

①,

,整理得

时,得

时,由判别式

解得

综上得的最小值为1,

所以由①可得,解得

故直线与圆总相交.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查, 经统计“青少年”与“中老年”的人数之比为9:11

关注

不关注

合计

青少年

15

中老年

合计

50

50

100

(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“一带一路”是否和年龄段有关?

(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.

附:参考公式,其中

临界值表:

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.
(1)若 ,求| |;
(2)设 =m +n (m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆的右焦点轴的垂线,与椭圆在第一象限内交于点,过作直线的垂线,垂足为

(1)求椭圆的方程;

(2)设为圆上任意一点,过点作椭圆的两条切线,设分别交圆于点,证明:为圆的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取学生的数学成绩,制成表所示的频率分布.

组号

分组

频数

频率

第一组

第二组

第三组

第四

第五组

合计

(1)值;

(2)若从第三、四、五中用分层抽样方法抽取学生,在这学生中随机抽取学生与张老师面谈求第三组中至少有学生与张老师面谈的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ﹣k( +lnx)(k为常数,e=2.71828…是自然对数的底数).
(1)当k≤0时,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点(为自然对数的底数).

(Ⅰ)求实数的取值范围;

(Ⅱ)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:

(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

同步练习册答案