精英家教网 > 高中数学 > 题目详情

作出函数y在定义域内且x∈[0,2π]的图象.

 

 

【答案】

【解析】∵y=cosx,由tanx有意义知,x,由tanx≠0知,x≠0,π,2π,图象如图.

 

练习册系列答案
相关习题

科目:高中数学 来源:“伴你学”新课程 数学·必修3、4(人教B版) 人教B版 题型:044

求函数y=tan2x的定义域、值域和周期,并作出它在区间[-π,π]内的图象.

查看答案和解析>>

科目:高中数学 来源:2012高三数学一轮复习单元练习题 不等式(4) 题型:044

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,上是减函数,在,+∞)上是增函数.

(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;

(2)研究函数y=x2(常数c>0)在定义域内的单调性,并说明理由;

(3)对函数y=x+和y=x2(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源:2012高三数学一轮复习单元练习题 函数(3) 题型:044

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.

(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;

(2)研究函数y=x2(常数c>0)在定义域内的单调性,并说明理由;

(3)对函数y=x+和y=x2(常数a>0)作出推广,使它们都是你所推广的函数的特例.

(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修一3.2函数模型及其应用练习卷(二)(解析版) 题型:解答题

某地区为响应上级号召,在2011年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.

(1)经过x年后,该地区的廉价住房为y万平方米,求y=f(x)的表达式,并求此函数的定义域.

(2)作出函数y=f(x)的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米?

 

查看答案和解析>>

同步练习册答案