精英家教网 > 高中数学 > 题目详情
12.执行如图所示的流程图,则输出的S的值为$\frac{2016}{2017}$.

分析 模拟执行程序框图,可得其功能是计算并输出S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2016×2017}$的值,用裂项法即可求值得解.

解答 解:模拟执行程序框图,可得其功能是计算并输出S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2016×2017}$的值.
由于S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2016×2017}$=1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{2016}$-$\frac{1}{2017}$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.
故答案为:$\frac{2016}{2017}$.

点评 本题主要考查了循环结构的程序框图,用裂项法求解是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知p:x≤m,q:|x-2|<1,若p是q的必要不充分条件,则实数m的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆的半径为4,其内接三角形的三边长分别为a,b,c,若$abc=16\sqrt{2}$,则该三角形的面积为(  )
A.$8\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\root{4}{{{{(-2)}^4}}}$的运算结果是(  )
A.2B.-2C.±2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2ax+2.
(1)若方程f(x)=0有两不相等的正根,求a的取值范围;
(2)若函数f(x)对任意x∈R都有f(x)=f(2-x)成立,且对任意x∈(0,3)都有不等式f(x)<2x+m恒成立,求实数m的取值范围;
(3)设g(a)是f(x)在x∈[-5,5]的最小值,求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设三个数$\sqrt{{{({x-1})}^2}+{y^2}}$,2,$\sqrt{{{({x+1})}^2}+{y^2}}$成等差数列,其中(x,y)对应点的曲线方程是C.
(1)求C的标准方程;
(2)直线l1:x-y+m=0与曲线C相交于不同两点M,N,且满足∠MON为钝角,其中O为直角坐标原点,求出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果a、b、c、d∈R,则下列命题中正确的是(  )
A.若a>b,c>b,则a>cB.若a>-b,则c-a<c+b
C.若a>b,则ac2>bc2D.若a>b,c>d,则ac>bd

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={m,5},B={m2+1,m,2},若x∈A是x∈B的充分条件,则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知[x]表示不超过x的最大整数(x∈R),如[-1.3]=-2,[0.8]=0,[3.4]=3,定义{x}=x-[x],给出下列命题,其中正确的是①③④.
①函数y={x}的周期为1.
②函数y={x}的定义域为R,值域为[0,1].
③在平面上,由满足[x]2+[y]2=50的点(x,y)所形成的图形的面积是12.
④设函数f(x)=$\left\{\begin{array}{l}{\{x\},x≥0}\\{f(x+1),x<0}\end{array}\right.$,则函数y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$有3个不同的零点.

查看答案和解析>>

同步练习册答案