精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知函数,,设

(Ⅰ)求函数的单调区间;

(Ⅱ)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;

(Ⅲ)是否存在实数m,使得函数的图像与函数的图像恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由。

 

【答案】

(1) 的单调递减区间为,单调递增区间为

(2)

(3) 当时,的图象与的图象恰有四个不同的交点

【解析】

试题分析:解:(I)

,由,∴上单调递增。

,∴上单调递减。

的单调递减区间为,单调递增区间为

(II)

恒成立

时,取得最大值

,∴

(III)若的图象与的图象恰有四个不同得交点,即有四个不同的根,亦即有四个不同的根。

当x变化时,的变化情况如下表:

x

的符号

的单调性

由表格知:

画出草图和验证可知,当时,恰有四个不同的交点。

∴当时,的图象与的图象恰有四个不同的交点。

考点:导数与函数,函数与方程的综合运用

点评:解决该试题的关键是能结合导数的符号判定函数单调性,以及函数的最值,进而得到求解。同时对于方程根的问题,转换为图像与x轴的交点个数来处理,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案