精英家教网 > 高中数学 > 题目详情
6.若f(x)是定义在R上的减函数,且对任意的a、b∈R满足:f(a+b)=f(a)+f(b).且f(-2)=12
(1)判断f(x)的奇偶性;
(2)若f(k-2)<f(2k)-6,求实数k的取值范围.

分析 (1)利用赋值法,先求出f(0)的值,再令令a=x,b=-x,根据奇偶性的定义即可判断,
(2)令x=y=-1,求出f(-1)=6,由f(k-2)<f(2k)-6,转化为f(k-2)<f(2k-1),根据函数的单调性,得到k-2>2k-1解得即可.

解答 解:设x=y=0:f(0+0)=f(0)+f(0),
即f(0)=0,
再令a=x,b=-x,
则f(x-x)=f(x)+f(-x)=0,
∴f(-x)=-f(x),
∴f(x)为奇函数,
(2)令x=y=-1
则f(-2)=2f(-1)=12
得f(-1)=6,
∵f(k-2)<f(2k)-6=f(2k)-f(-1)=f(2k)+(-f(-1))=f(2k+1),
又f(x)是定义在R上的减函数,
∴k-2>2k+1
解得k<-3,
故k的取值范围为(-∞,-3)

点评 本题主要考查了抽象函数表达式反映函数性质及抽象函数表达式的应用,函数奇偶性的定义及其证明,利用函数性质和函数的单调性解不等式的方法,转化化归的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x+2|x-a|,
(1)当a=0时,求不等式f(x)≥1的解集;
(2)当a<0时,函数f(x)与x轴围成的三角形面积为6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个底面半径和高都为2的圆椎的表面积为(  )
A.4($\sqrt{2}$+1)πB.4(2$\sqrt{2}$+1)πC.4$\sqrt{2}$πD.8$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a=log32,b=log23,$c={log_4}\frac{1}{3}$,则下列结论正确的是(  )
A.a<c<bB.c<b<aC.${10^a}<{({\frac{1}{3}})^b}$D.$lga<{({\frac{1}{2}})^b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=loga(4-ax)在区间[0,2]上是减函数,则实数a的取值范围是(  )
A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设α、β都是锐角,且cosα=$\frac{1}{3}$,sin(α+β)=$\frac{4}{5}$,则cosβ等于(  )
A.$\frac{8\sqrt{2}-3}{15}$B.$\frac{8\sqrt{2}+3}{15}$C.$\frac{8\sqrt{2}-3}{15}$或$\frac{8\sqrt{2}+3}{15}$D..以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U={1,2,3,4,5,6},A={2,4,6},B={1,2,5},则A∩(∁UB)等于(  )
A.{2}B.{4,6}C.{2,3,4,6}D.{1,2,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数表示同一函数的是(  )
A.f(x)=(a2x)${\;}^{\frac{1}{2}}$(a>0)与g(x)=ax(a>0)B.f(x)=x2+x+1与g(x)=x2+x+(2x-1)0
C.f(x)=$\sqrt{x-2}$•$\sqrt{x+2}$与g(x)=$\sqrt{{x}^{2}-4}$D.f(x)=lgx2与g(x)=$\sqrt{{x^2}-4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠C=90°,两直角边和斜边a,b,c满足条件a+b=cx,则x的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

同步练习册答案